Log in

Polyphenylene sulphide/carbon fiber composites: study on their thermal, mechanical and microscopic properties

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The present study investigates the thermal, mechanical and microscopic properties of polyphenylene sulphide/carbon fiber (PPS/CF) composites by incremental number of fiber layers. The composites were prepared by hand lay-up technique followed by compression molding. A superior matrix-reinforcement adhesion was attained without the use of coupling agent and mechanical stability of the composites improved with increasing fiber layers. Transverse rupture strength and bending modulus were improved by 59.84 and 125.21 %, respectively, without loss in toughness. Impact strength and hardness values were enhanced while storage modulus, loss modulus and dam** factor were dropped by increases in fiber layers. Thermogravimetric analysis (TGA) indicated a gradual rise in thermal stability (16.84 %) of the composite as compared to pure matrix. Surface morphology and crack propagation were studied by optical microscopy. It was found that crack was propagated in a linear plane by applying load. In addition, scanning electron microscopy (SEM) illustrated steady alignment of fibers and uniform distribution of the matrix around reinforcement. Based on the obtained results, fiber layers showed great potential for enhancement of thermal and mechanical properties of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Suresh A, Harsha AP, Ghosh MK (2009) Solid particle erosion studies on polyphenylene sulfide composites and prediction on erosion data using artificial neural networks. Wear 266:184–193

    Article  CAS  Google Scholar 

  2. Nejhad MNG, Parvizi-Majidi A (1990) Impact behaviour and damage tolerance of woven carbon fibre-reinforced thermoplastic composites. Composites 21:155–168

    Article  Google Scholar 

  3. Sinmazçelik T, Fidan S, Günay V (2008) Residual mechanical properties of carbon/polyphenylenesulphide composites after solid particle erosion. Mater Des 29:1419–1426

    Article  Google Scholar 

  4. Jiang Z, Gyurova LA, Schlarb AK, Friedrich K, Zhang Z (2008) Study on friction and wear behavior of polyphenylene sulfide composites reinforced by short carbon fibers and sub-micro TiO2 particles. Compos Sci Technol 68:734–742

    Article  CAS  Google Scholar 

  5. Jang BP, Kowbel W, Jang BZ (1992) Impact behavior and impact-fatigue testing of polymer composites. Compos Sci Technol 44:107–118

    Article  CAS  Google Scholar 

  6. Pandya KS, Veerraju C, Naik NK (2011) Hybrid composites made of carbon and glass woven fabrics under quasi-static loading. Mater Des 32:4094–4099

    Article  CAS  Google Scholar 

  7. Sınmazçelika T, Taşkiran İ (2007) Erosive wear behaviour of polyphenylenesulphide (PPS) composites. Mater Des 28:2471–2477

    Article  Google Scholar 

  8. Yýlmaz T, Sýnmazçelik T (2007) Investigation of load bearing performances of pin connected carbon/polyphenylene sulphide composites under static loading conditions. Mater Des 28:520–527

    Article  Google Scholar 

  9. Naffakh M, Díez-Pascual AM (2014) Thermoplastic polymer nanocomposites based on inorganic fullerene-like nanoparticles and inorganic nanotubes. Inorganics 2:291–312

    Article  CAS  Google Scholar 

  10. Wang J, Li KX, He HW, Wang JL, Sun GH (2011) Kinetic and thermodynamics analysis of water absorption in unidirectional fiber reinforced composites by polyethersulphone and polyphenylence sulfide. Colloids Surf A 377:330–335

    Article  CAS  Google Scholar 

  11. Ferreira JAM, Costa JDM, Reis PNB (1999) Static and fatigue behaviour of glass fibre-reinforced polypropylene composites. Theor Appl Fract Mech 31:67–74

    Article  CAS  Google Scholar 

  12. Shi H, Villages IF, Bersee HEN (2013) Strength and failure modes in resistance welded thermoplastic composite joints: effect of fibre–matrix adhesion and fibre orientation. Compos A 55:1–10

    Article  CAS  Google Scholar 

  13. Vieille B, Taleb L (2011) About the influence of temperature and matrix ductility on the behavior of carbon woven-ply PPS or epoxy laminates: notched and unnotched laminates. Compos Sci Technol 71:998–1007

    Article  CAS  Google Scholar 

  14. Vieille B, Aucher J, Taleb L (2011) Carbon fiber fabric reinforced pps laminates: influence of temperature on mechanical properties and behavior. Adv Polym Technol 30:80–95

    Article  CAS  Google Scholar 

  15. Ye L, Chen ZR, Lu M, Hou M (2005) De-consolidation and re-consolidation in CF/PPS thermoplastic matrix composites. Compos A 36:915–922

    Article  Google Scholar 

  16. Benoit V, Cédric L, Alexis C (2014) Post fire behavior of carbon fibers Polyphenylene Sulfide-and epoxy-based laminates for aeronautical applications: a comparative study. Mater Des 63:56–68

    Article  CAS  Google Scholar 

  17. Gull N, Khan SM, Munawar MA, Shafiq M, Anjum F, Butt MTZ, Jamil T (2015) Synthesis and characterization of zinc oxide (ZnO) filled glass fiber reinforced polyester composites. Mater Des 67:313–317

    Article  CAS  Google Scholar 

  18. EL-Dessouky HM, Lawrence CA (2013) Ultra-lightweight carbon fibre/thermoplastic composite material using spread tow technology. Compos B 50:91–97

    Article  CAS  Google Scholar 

  19. **a LG, Li AJ, Wang WQ, Yin Q, Lin H, Zhao YB (2008) Effects of resin content and preparing conditions on the properties of polyphenylene sulfide resin/graphite composite for bipolar plate. J Power Sour 178:363–367

    Article  CAS  Google Scholar 

  20. Kenny JM, Maffezzoli A (1991) Crystallization kinetics of poly(phenylene sulfide) (PPS) and PPS/carbon fiber composites. Polym Eng Sci 31:607–614

    Article  CAS  Google Scholar 

  21. Zhang R, Huang Y, Min M, Gao Y, Yu X, Lu A, Lu Z (2009) Isothermal crystallization of pure and glass fiber reinforced poly(phenylene sulfide) composites. Polym Compos 30:460–466

    Article  CAS  Google Scholar 

  22. ** FL, Lee SY, Park SJ (2013) Polymer matrices for carbon fiber-reinforced polymer composites. Carbon Lett 14:76–88

    Article  Google Scholar 

  23. Stoeffler K, Andjelic S, Legros N, Roberge J, Steen B, Schougaard SB (2013) Polyphenylene sulfide (PPS) composites reinforced with recycled carbon fiber. Compos Sci Technol 84:65–71

    Article  CAS  Google Scholar 

  24. Yang Y, Duan H, Zhang S, Niu P, Zhang G, Long S, Wang X, Yang J (2013) Morphology control of nanofillers in poly (phenylene sulfide): a novel method to realize the exfoliation of nanoclay by SiO2 via melt shear flow. Compos Sci Technol 75:28–34

    Article  CAS  Google Scholar 

  25. Chen Z, Li T, Yang Y, Liu X, Lv R (2004) Mechanical and tribological properties of PA/PPS blends. Wear 257:696–707

    Article  CAS  Google Scholar 

  26. Wang H, Liu D, Yan L, Li M, Wang C, Zhu Y (2014) A computed model for tribological properties of porous self-lubricating PPS composites: numerical analysis and experimental verification. Wear 320:94–102

    Article  CAS  Google Scholar 

  27. Desio GP, Rebenfeld L (1992) Crystallization of fiber-reinforced poly(phenylene sulfide) composites, I. Experimental studies of crystallization rates and morphology. J Appl Polym Sci 44:1989–2001

    Article  CAS  Google Scholar 

  28. Díez-Pascual AM, Naffakh M, Marco C, Ellis G (2012) Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Compos A 43:603–612

    Article  Google Scholar 

  29. Gonon L, Momtaz A, Van Hoyweghen D, Chabert B, Gérard JF, Gaertner R (1996) Physico-chemical and micromechanical analysis of the interface in a poly(phenylene sulfide)/glass fiber composite—a microbond study. Polym Compos 17:265–274

    Article  CAS  Google Scholar 

  30. Liu B, Liu Z, Wang X, Zhang G, Long S, Yang J (2013) Interfacial shear strength of carbon fiber reinforced polyphenylene sulfide measured by the microbond test. Polym Test 32:724–730

    Article  CAS  Google Scholar 

  31. Hemanth R, Sekar M, Suresha B (2014) Effects of fibers and fillers on mechanical properties of thermoplastic composites. Indian J Adv Chem Sci 2:28–35

    Google Scholar 

  32. Zhang K, Zhang G, Liu B, Wang X, Long S, Yang J (2014) Effect of aminated polyphenylene sulfide on the mechanical properties of short carbon fiber reinforced polyphenylene sulfide composites. Compos Sci Technol 98:57–63

    Article  CAS  Google Scholar 

  33. Yamamoto Y, Hashimoto M (2004) Friction and wear of water lubricated PEEK and PPS sliding contacts: part 2. Composites with carbon or glass fibre. Wear 257:181–189

    Article  CAS  Google Scholar 

  34. Wang S, Mei Z, Chung DDL (2001) Interlaminar damage in carbon fiber polymer-matrix composites, studied by electrical resistance measurement. Int J Adhes Adhes 21:465–471

    Article  CAS  Google Scholar 

  35. Akonda MH, Lawrence CA, Weager BM (2012) Recycled carbon fibre-reinforced polypropylene thermoplastic composites. Compos A 43:79–86

    Article  Google Scholar 

  36. Asundi A, Choi AYN (1997) Fiber metal laminates: an advanced material for future aircraft. J Mater Process Tech 63:384–394

    Article  Google Scholar 

  37. Sinmazçelik T, Avcu E, Bora MÖ, Çoban O (2011) A review: fibre metal laminates, background, bonding types and applied test methods. Mater Des 32:3671–3685

    Article  Google Scholar 

  38. Folgueras LC, Alves MA, Rezende MC (2014) Evaluation of a nanostructured microwave absorbent coating applied to a glass fiber/polyphenylene sulfide laminated composite. Mater Res 17:197–202

    Article  Google Scholar 

  39. Saad NA, Hamzah MS, Hamzah AF (2013) Study of fatigue behavior of composite materials with the basis of polyphenylene sulfide (PPS) reinforced with glass fiber and carbon. Int J Eng Technol 3:467–475

    Google Scholar 

  40. Kiran BVB, Harish G (2013) Effect of resin and thickness on tensile properties of laminated composites. Am Int J Res Sci Technol Eng Math 5:128–134

    Google Scholar 

  41. American Standard of Testing Materials (ASTM): D790-10 (2010) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International 146–154

  42. American Standard of Testing Materials (ASTM): D256-10 (2010) Standard test methods for determining the Izod pendulum impact resistance of plastics. ASTM International 1–20

  43. American Standard of Testing Materials (ASTM): D785-08 (2008) Standard test methods of test for Rockwell hardness of plastic and electrical insulating materials. ASTM International 274–279

  44. Rathnakar G, Shivanand HK (2012) Effect of thickness on flexural properties of epoxy based glass fiber reinforced laminate. Int J Sci Technol 2:409–412

    Google Scholar 

  45. Reis PNB, Ferreira JAM, Antunes FV, Costa JDM (2007) Flexural behaviour of hybrid laminated composites. Compos A 38:1612–1620

    Article  Google Scholar 

  46. Khatri SC, Koczak MJ (1996) Thick-section AS4-graphite/E-glass/PPS hybrid composites: Part II. Flexural response. Compos Sci Technol 56:473–482

    Article  CAS  Google Scholar 

  47. Kiran BVB, Harish G (2014) Influence of resin and thickness of laminate on flexural properties of laminated composites. Int J Eng Sci Innov Technol 3:279–287

    Google Scholar 

  48. Zhou S, Zhang Q, Wu C, Huang J (2013) Effect of carbon fiber reinforcement on the mechanical and tribological properties of polyamide6/polyphenylene sulfide composites. Mater Des 44:493–499

    Article  CAS  Google Scholar 

  49. Ning H, Vaidya U, Janowski GM, Husman G (2007) Design, manufacture and analysis of a thermoplastic composite frame structure for mass transit. Compos Struct 80:105–116

    Article  Google Scholar 

  50. Belingardi G, Cavatorta MP, Frasca C (2006) Bending fatigue behavior of glass–carbon/epoxy hybrid composites. Compos Sci Technol 66:222–232

    Article  CAS  Google Scholar 

  51. Saad NA, Hamza MS, Hamzah AF (2014) Experimental and numerical simulation of impact fracture toughness of polyphenylene sulfide basis composite material. Material Engineering, University of Babylon, Iraq

    Google Scholar 

  52. Vieille B, Casado VM, Bouvet C (2013) About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic- and thermosetting-composites: a comparative study. Compos Struct 101:9–21

    Article  Google Scholar 

  53. Valach J, Kytyr D, Doktor T, Sekyrova K, Kralik V, Nemecek J (2011) Comparison of mechanical properties of CFRP laminate obtained from full-scale test and extrapolated from local measurement. Chemické Listy 105:729–732

    Google Scholar 

  54. Dhal JP, Mishra SC (2013) Processing and properties of natural fiber-reinforced polymer composite. J Mater 2013:1–6

    Article  Google Scholar 

  55. Devendra K, Rangaswamy T (2013) Strength characterization of E-glass fiber reinforced epoxy composites with filler materials. J Min Mater Character Eng 1:353–357

    CAS  Google Scholar 

  56. Bora MO, Coban O, Avcu E, Fidan S, Sınmazçelik T (2013) The effect of TIO2 filler content on the mechanical, thermal, and tribological properties of TiO2/PPS composites. Polym Compos 34:1591–1599

    Article  CAS  Google Scholar 

  57. Díez-Pascual AM, Guan J, Simard B, Gómez-Fatou MA (2012) Poly(phenylene sulphide) and poly(ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper: I–Structure, thermal stability and crystallization behaviour. Compos A 43:997–1006

    Article  Google Scholar 

  58. Diez-Pascual AM, Naffakh M (2012) Tuning the properties of carbon fiber-reinforced poly(phenylene sulphide) laminates via incorporation of inorganic nanoparticles. Polymer 53:2369–2378

    Article  CAS  Google Scholar 

  59. Chipara M, Lozano K, Hernandez A, Chipara M (2008) TGA analysis of polypropylene-carbon nanofibers composites. Polym Degrad Stab 93:871–876

    Article  CAS  Google Scholar 

  60. Wani V, Mahilal M, Jain S, Singh PP, Bhattacharya B (2012) Studies on the influence of testing parameters on dynamic and transient properties of composite solid rocket propellants using a dynamic mechanical analyzer. J Aerosp Technol Manag 4:443–452

    Article  CAS  Google Scholar 

  61. Lee TH, Boey FYC, Loh NH (1993) Characterization of a fibre-reinforced PPS composite by dynamic mechanical analysis: effect of aspect ratio and static stress. Compos Sci Technol 49:217–223

    Article  CAS  Google Scholar 

  62. Kanagaraj S, Fonseca A, Guedes RM, Oliveira MSA, Simoes JAO (2011) Thermo-mechanical behaviour of ultrahigh molecular weight polyethylene-carbon nanotubes composites under different cooling techniques. Defect Diffus Forum 312:331–340

    Article  Google Scholar 

  63. Komalan C, George KE, Kumar PAS, Varughese KT, Thomas S (2007) Dynamic mechanical analysis of binary and ternary polymer blends based on nylon copolymer/EPDM rubber and EPM grafted maleic anhydride compatibilizer. Express Polym Lett 1:641–653

    Article  CAS  Google Scholar 

  64. Abdellaoui H, Bensalah H, Echaabi J, Bouhfid R, Qaiss A (2015) Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. Mater Des 68:104–113

    Article  CAS  Google Scholar 

  65. Díez-Pascual AM, Ashrafi B, Naffakh M, González-Domínguez JM, Johnston A, Simard B, Martínez MT, Gómez-Fatou MA (2011) Influence of carbon nanotubes on the thermal, electrical and mechanical properties of poly(ether ether ketone)/glass fiber laminates. Carbon 49:2817–2833

    Article  Google Scholar 

  66. Davies IJ, Ishikawa T, Shibuya M, Hirokawa T (1999) Optical microscopy of a 3-D woven SiC/SiC-based composite. Compos Sci Technol 59:429–437

    Article  CAS  Google Scholar 

  67. Bernasconi A, Cosmi F, Hine PJ (2012) Analysis of fibre orientation distribution in short fibre reinforced polymers: a comparison between optical and tomographic methods. Compos Sci Technol 72:2002–2008

    Article  CAS  Google Scholar 

  68. Sreekala MS, George J, Kumaran MG, Thomas S (2002) The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Compos Sci Technol 62:339–353

    Article  CAS  Google Scholar 

  69. Koschinski I, Reichert KH (1988) Preparation of carbon fibre reinforced poly(phenylene sulfide) by in situ polymerization. Die Makromolekulare Chemie Rapid Commun 9:291–298

    Article  CAS  Google Scholar 

  70. Quintelier J, Samyan P, Beats PD, Ost W, Van Paepegem W (2005) Wear of steel against carbon fibre reinforced PPS. Tribol Ind 27:29–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzad Maqsood Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.M., Gull, N., Munawar, M.A. et al. Polyphenylene sulphide/carbon fiber composites: study on their thermal, mechanical and microscopic properties. Iran Polym J 25, 475–485 (2016). https://doi.org/10.1007/s13726-016-0439-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-016-0439-3

Keywords

Navigation