Log in

Transbronchial Tumor Ablation

  • REVIEW
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Technological advancements in transbronchial tumor ablation are poised to revolutionize bronchoscopic interventions by enabling diagnosis and treatment in one session. However, a deep understanding of ablation technologies and the factors determining their success is vital for effective implementation, which this review aims to address.

Recent Findings

While percutaneous ablation has been part of lung cancer care for over two decades, transbronchial ablation is in its infancy. Recent reports of transbronchial ablation bring excitement and the need for further developments.

Summary

Transbronchial ablative technologies could soon be a key part of the toolset for interventional pulmonologists. Thorough knowledge about ablation technologies, their determining factors and conditions for safe and effective application are crucial for effective utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Doppman JL, Krudy AG, Marx SJ, et al. Aspiration of enlarged parathyroid glands for parathyroid hormone assay. Radiology. 1983;148(1):31–5.

    Article  PubMed  CAS  Google Scholar 

  2. Solbiati L, Giangrande A, De Pra L, Bellotti E, Cantù P, Ravetto C. Percutaneous ethanol injection of parathyroid tumors under US guidance: Treatment for secondary hyperparathyroidism. Radiology. 1985;155(3):607–10.

    Article  PubMed  CAS  Google Scholar 

  3. Livraghi T, Festi D, Monti F, Salmi A, Vettori C. US-guided percutaneous alcohol injection of small hepatic and abdominal tumors. Radiology. 1986;161(2):309–12.

    Article  PubMed  CAS  Google Scholar 

  4. Livraghi T, Vettori C, Lazzaroni S. Liver metastases: Results of percutaneous ethanol injection in 14 patients. Radiology. 1991;179(3):709–12.

    Article  PubMed  CAS  Google Scholar 

  5. Livraghi T, Giorgio A, Marin G, et al. Hepatocellular carcinoma and cirrhosis in 746 patients: Long-term results of percutaneous ethanol injection. Radiology. 1995;197(1):101–8.

    Article  PubMed  CAS  Google Scholar 

  6. Glazer ES, Curley SA. The ongoing history of thermal therapy for cancer. Surg. Oncol. Clin. N. 2011.

  7. Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am J Roentgenol. 2000;174(2):323–31.

    Article  CAS  Google Scholar 

  8. Chu KF, Dupuy DE. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat Rev Cancer. 2014;14(3):199–208.

    Article  PubMed  CAS  Google Scholar 

  9. Strasberg S, Linehan D. Radiofrequency ablation of liver tumors. Curr Probl Surg. 2003;40(8):459–98.

    Article  PubMed  Google Scholar 

  10. Goldberg SN, Gazelle GS, Halpern EF, Rittman WJ, Mueller PR, Rosenthal DI. Radiofrequency tissue ablation: Importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad Radiol. 1996;3(3):212–8.

    Article  PubMed  CAS  Google Scholar 

  11. Ahmed M, Brace CL, Lee FC, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology. 2011.

  12. Cooper IS. Cryogenic surgery: A new method of destruction or extirpation of benign or malignant tissues. N Engl J Med. 1963;268(14):743–9.

    Article  Google Scholar 

  13. Gage AA, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology. 1998;37(3):171–86.

    Article  PubMed  CAS  Google Scholar 

  14. Organ LW. Electrophysiologic principles of radiofrequency lesion making. Appl Neurophysiol. 1976;39(2):69–76.

    PubMed  Google Scholar 

  15. McGahan JP, Browning PD, Brock JM, Tesluk H. Hepatic ablation using radiofrequency electrocautery. Invest Radiol. 1990;25(3):267–70.

    Article  PubMed  CAS  Google Scholar 

  16. Livraghi T, Goldberg SN, Monti F, et al. Saline-enhanced radio-frequency tissue ablation in the treatment of liver metastases. Radiology. 1997;202(1):205–10.

    Article  PubMed  CAS  Google Scholar 

  17. Ni Y, Miao Y, Mulier S, Yu J, Baert AL, Marchal G. A novel “cooled-wet” electrode for radiofrequency ablation. Eur. Radiol. 2000.

  18. Pereira PL, Trübenbach J, Schenk M, et al. Radiofrequency ablation: In vivo comparison of four commercially available devices in pig livers. Radiology. 2004;232(2):482–90.

    Article  PubMed  Google Scholar 

  19. Rossi S, Buscarini E, Garbagnati F, et al. Percutaneous treatment of small hepatic tumors by an expandable RF needle electrode. Am J Roentgenol. 1998;170(4):1015–22.

    Article  CAS  Google Scholar 

  20. Laeseke PF, Frey TM, Brace CL, et al. Multiple-electrode radiofrequency ablation of hepatic malignancies: Initial clinical experience. Am J Roentgenol. 2007;188(6):1485–94.

    Article  Google Scholar 

  21. Lu DS, Raman SS, Vodopich DJ, Wang M, Sayre J, Lassman C. Effect of vessel size on creation of hepatic radiofrequency lesions in pigs: Assessment of the “heat sink” effect. Am J Roentgenol. 2002;178(1):47–51.

    Article  Google Scholar 

  22. Osepchuk JM. The history of the microwave oven: A critical review. Paper presented at: 2009 IEEE MTT-S International Microwave Symposium Digest. 2009.

  23. Sun Y, Wang Y, Ni X, et al. Comparison of ablation zone between 915- and 2,450-MHz cooled-shaft microwave antenna: Results in in vivo porcine livers. AJR Am. J. Roentgenol. 2009.

  24. Brace CL. Microwave ablation technology: What every user should know. Curr Probl Diagn Radiol. 2009;38(2):61–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Carrafiello G, Laganà D, Mangini M, et al. Microwave tumors ablation: Principles, clinical applications and review of preliminary experiences. Int J Surg. 2008;6(Suppl 1):S65-69.

    Article  PubMed  Google Scholar 

  26. Poulou LS, Botsa E, Thanou I, Ziakas PD, Thanos L. Percutaneous microwave ablation vs radiofrequency ablation in the treatment of hepatocellular carcinoma. World J. Hepatol. 2015.

  27. Fallahi H, Prakash P. Antenna designs for microwave tissue ablation. Crit Rev Biomed Eng. 2018.

  28. Lubner MG, Brace CL, Hinshaw JL, Lee FT. Microwave tumor ablation: Mechanism of action, clinical results, and devices. JVIR 2010;21(8, Supplement):S192-S203.

  29. Gage AA. History of cryosurgery. Semin Surg Oncol. 1998;14(2):99–109.

    Article  PubMed  CAS  Google Scholar 

  30. Erinjeri JP, Clark T. Cryoablation: Mechanism of action and devices. JVIR. 2010.

  31. Lyons GR, Winokur RS, Pua BB. Pulmonary cryoablation zones: More aggressive ablation is warranted in vivo. AJR Am. J. Roentgenol. 2019.

  32. Gage AA, Guest K, Montes M, Caruana JA, Whalen DA. Effect of varying freezing and thawing rates in experimental cryosurgery. Cryobiology. 1985;22(2):175–82.

    Article  PubMed  CAS  Google Scholar 

  33. Olive G, Yung R, Marshall H, Fong KM. Alternative methods for local ablation-interventional pulmonology: A narrative review. Transl Lung Cancer Res. 2021;10(7):3432–45.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Steinfort DP, Rangamuwa K. A glimpse of the future?-Bronchoscopic ablation of peripheral early stage lung cancer. Transl Lung Cancer Res. 2021;10(10):3861–4.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Harris K, Puchalski J, Sterman D. Recent advances in bronchoscopic treatment of peripheral lung cancers. Chest. 2017;151(3):674–85.

    Article  PubMed  Google Scholar 

  36. de Baere T, Tselikas L, Catena V, Buy X, Deschamps F, Palussiere J. Percutaneous thermal ablation of primary lung cancer. Diagn Interv Imaging. 2016;97(10):1019–24.

    Article  PubMed  Google Scholar 

  37. Genshaft SJ, Suh RD, Abtin F, et al. Society of interventional radiology multidisciplinary position statement on percutaneous ablation of non-small cell lung cancer and metastatic disease to the lungs: Endorsed by the Canadian Association for Interventional Radiology, the Cardiovascular and Interventional Radiological Society of Europe, and the Society of Interventional Oncology. J Vasc Interv Radiol. 2021;32(8):1241 e1241–1241 e1212.

  38. Murphy MC, Wrobel MM, Fisher DA, Cahalane AM, Fintelmann FJ. Update on image-guided thermal lung ablation: Society guidelines, therapeutic alternatives, and postablation imaging findings. AJR Am J Roentgenol. 2022;219(3):471–85.

    Article  PubMed  Google Scholar 

  39. • Bartlett EC, Rahman S, Ridge CA. Percutaneous image-guided thermal ablation of lung cancer: What is the evidence? Lung Cancer. 2023;176:14–23. This is the most recent review on the evidence to date for percutaneous IGTA.

    Article  PubMed  CAS  Google Scholar 

  40. Siu ICH, Chan JWY, Manuel II TB, Ngai JCL, Lau RWH, Ng CSH. Bronchoscopic ablation of lung tumours: Patient selection and technique. JOVS. 2021;8.

  41. Tsushima K, Koizumi T, Tanabe T, et al. Bronchoscopy-guided radiofrequency ablation as a potential novel therapeutic tool. Eur Respir J. 2007;29(6):1193–200.

    Article  PubMed  CAS  Google Scholar 

  42. Tanabe T, Koizumi T, Tsushima K, et al. Comparative study of three different catheters for CT imaging-bronchoscopy-guided radiofrequency ablation as a potential and novel interventional therapy for lung cancer. Chest. 2010;137(4):890–7.

    Article  PubMed  Google Scholar 

  43. Koizumi T, Tsushima K, Tanabe T, et al. Bronchoscopy-guided cooled radiofrequency ablation as a novel intervention therapy for peripheral lung cancer. Respiration. 2015;90(1):47–55.

    Article  PubMed  Google Scholar 

  44. Steinfort DP, Antippa P, Rangamuwa K, et al. Safety and feasibility of a novel externally cooled bronchoscopic radiofrequency ablation catheter for ablation of peripheral lung tumours: A first-in-human dose escalation study. Respiration. 2023;102(3):211–9.

    Article  PubMed  CAS  Google Scholar 

  45. **e F, Zheng X, **ao B, Han B, Herth FJF, Sun J. Navigation bronchoscopy-guided radiofrequency ablation for nonsurgical peripheral pulmonary tumors. Respiration. 2017;94(3):293–8.

    Article  PubMed  Google Scholar 

  46. Chan JWY, Lau RWH, Ngai JCL, et al. Transbronchial microwave ablation of lung nodules with electromagnetic navigation bronchoscopy guidance-A novel technique and initial experience with 30 cases. Transl Lung Cancer Res. 2021;10(4):1608–22.

    Article  PubMed  PubMed Central  Google Scholar 

  47. • Chan JWY, Siu ICH, Chang ATC, et al. Transbronchial techniques for lung cancer treatment: Where are we now? Cancers (Basel). 2023;15(4).This is the most recent review on transbronchial techniques for lung cancer.

  48. **e F, Chen J, Jiang Y, Sun J, Hogarth DK, Herth FJF. Microwave ablation via a flexible catheter for the treatment of nonsurgical peripheral lung cancer: A pilot study. Thorac Cancer. 2022;13(7):1014–20.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pritchett MA, Reisenauer JS, Kern R, et al. Novel image-guided flexible-probe transbronchial microwave ablation for stage 1 lung cancer. Respiration. 2023;102(3):182–93.

    Article  PubMed  CAS  Google Scholar 

  50. Bao F, Yu F, Wang R, et al. Electromagnetic bronchoscopy guided microwave ablation for early stage lung cancer presenting as ground glass nodule. Transl Lung Cancer Res. 2021;10(9):3759–70.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fan Y, Zhang AM, Wu XL, et al. Transbronchial needle aspiration combined with cryobiopsy in the diagnosis of mediastinal diseases: A multicentre, open-label, randomised trial. Lancet Respir Med. 2023;11(3):256–64.

    Article  PubMed  Google Scholar 

  52. Kim SH, Mok J, Jo EJ, et al. The additive impact of transbronchial cryobiopsy using a 11-mm diameter cryoprobe on conventional biopsy for peripheral lung nodules. Cancer Res Treat. 2023;55(2):506–12.

    Article  PubMed  Google Scholar 

  53. Hammer D, Budi L, Nagy A, Varga R, Horvath P. Evaluation of a transbronchial cryoprobe for the ablation of pulmonary nodules: An in vitro pilot study. BMC Pulm Med. 2023;23(1):71.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zheng X, Yuan H, Gu C, et al. Transbronchial lung parenchyma cryoablation with a novel flexible cryoprobe in an in vivo porcine model. Diagn Interv Imaging. 2022;103(1):49–57.

    Article  PubMed  Google Scholar 

  55. Moore W, Talati R, Bhattacharji P, Bilfinger T. Five-year survival after cryoablation of stage I non-small cell lung cancer in medically inoperable patients. J Vasc Interv Radiol. 2015;26(3):312–9.

    Article  PubMed  Google Scholar 

  56. McDevitt JL, Mouli SK, Nemcek AA, Lewandowski RJ, Salem R, Sato KT. Percutaneous cryoablation for the treatment of primary and metastatic lung tumors: Identification of risk factors for recurrence and major complications. J Vasc Interv Radiol. 2016;27(9):1371–9.

    Article  PubMed  Google Scholar 

  57. de Baere T, Tselikas L, Woodrum D, et al. Evaluating cryoablation of metastatic lung tumors in patients–Safety and efficacy: The ECLIPSE trial–Interim analysis at 1 year. J Thorac Oncol. 2015;10(10):1468–74.

    Article  PubMed  Google Scholar 

  58. Callstrom MR, Woodrum DA, Nichols FC, et al. Multicenter study of metastatic lung tumors targeted by interventional cryoablation evaluation (SOLSTICE). J Thorac Oncol. 2020;15(7):1200–9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. • Paez-Carpio A, Gomez FM, Isus Olive G, et al. Image-guided percutaneous ablation for the treatment of lung malignancies: Current state of the art. Insights Imaging. 2021;12(1):57. This is a detailed review of technical aspects percutaneous IGTA.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e278S-e313S.

    Article  PubMed  CAS  Google Scholar 

  61. NCCN. NCCN guidelines® insights - Non–small cell lung cancer, version 3.2023. https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Published 2023. Accessed 06/01/2023, 2023.

  62. Venturini M, Cariati M, Marra P, Masala S, Pereira PL, Carrafiello G. CIRSE standards of practice on thermal ablation of primary and secondary lung tumours. Cardiovasc Intervent Radiol. 2020;43(5):667–83.

    Article  PubMed  Google Scholar 

  63. Eberhardt WE, De Ruysscher D, Weder W, et al. 2nd ESMO consensus conference in lung cancer: Locally advanced stage III non-small-cell lung cancer. Ann Oncol. 2015;26(8):1573–88.

    Article  PubMed  CAS  Google Scholar 

  64. Nelson DB, Tam AL, Mitchell KG, et al. Local recurrence after microwave ablation of lung malignancies: A systematic review. Ann Thorac Surg. 2019;107(6):1876–83.

    Article  PubMed  Google Scholar 

  65. Sebek J, Taeprasartsit P, Wibowo H, Beard WL, Bortel R, Prakash P. Microwave ablation of lung tumors: A probabilistic approach for simulation‐based treatment planning. Med Phys. 2021.

  66. Ponder E. The coefficient of thermal conductivity of blood and of various tissues. J Gen Physiol. 1962;45(3):545–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sonntag PD, Hinshaw JL, Lubner MG, CL Brace, Lee FT Jr. Thermal ablation of lung tumors. Surg Oncol Clin N Am. 2011;20(0):369–87.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Blackmon SH, Sterner R, Eiken PW, et al. Technical and safety performance of CT-guided percutaneous microwave ablation for lung tumors: An ablate and resect study. JTD. 2021.

  69. Frandon J, Akessoul P, Kammoun T, et al. Microwave ablation of liver, kidney and lung lesions: One-month response and manufacturer’s charts’ reliability in clinical practice. Sensors (Basel). 2022;22(11).

  70. U.S. Food and Drug Administration. (2020, October 13). Letter to NeuWave Medical, Inc. regarding the NEUWAVE Microwave Ablation System and Accessories (K200081). https://www.accessdata.fda.gov/cdrh_docs/pdf20/K200081.pdf.

  71. Hu H, Nan Q, Tian Z, Gao X. Study on the microwave ablation effect of inflated porcine lung. Appl. Sci. 2022.

  72. Vespro V, Bonanno MC, Andrisani MC, et al. CT after lung microwave ablation: Normal findings and evolution patterns of treated lesions. Tomography. 2022;8(2):617–26.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Chheang S, Abtin F, Guteirrez A, Genshaft S, Suh RD. Imaging features following thermal ablation of lung malignancies. Semin. Interv. Radiol. 2013.

  74. Li H, Long Y, Yan G-W, et al. Microwave ablation vs. cryoablation for treatment of primary and metastatic pulmonary malignant tumors. Mol Chin Oncol. 2022.

  75. Colak E, Tatli S, Shyn PB, Tuncali K, Silverman SG. CT-guided percutaneous cryoablation of central lung tumors. Diagn Interv Radiol. 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell Miller.

Ethics declarations

Conflict of Interest

Russell J. Miller, MD, CDR, MC, USN is a military service member or federal/contracted employee of the United States government. This work was prepared as part of his official duties. Title 17 U.S.C. 105 provides that ‘copyright protection under this title is not available for any work of the United States Government.’ Title 17 U.S.C. 101 defines US Government work as work prepared by a military service member or employee of the US Government as part of that person’s official duties. The views expressed in this article reflect the results of research conducted by the author and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the United States Government.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, R., Cheng, G. Transbronchial Tumor Ablation. Curr Pulmonol Rep 13, 103–115 (2024). https://doi.org/10.1007/s13665-023-00329-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-023-00329-6

Keywords

Navigation