Log in

Prevalence of Heteroepitaxial Recrystallization in the Low Solvus High Refractory (LSHR) γ–γ′ Superalloy

  • Original Research Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Heteroepitaxial recrystallization (HeRX) is a recently discovered recrystallization mechanism that can occur during thermomechanical processing of Ni-base superalloys. It is important to understand this mechanism because it offers insights into grain size control, which is critical to the tensile, fatigue, and creep properties of superalloys. In this paper, HeRX activity in the low solvus high refractory (LSHR) is quantitatively characterized using combined energy-dispersive X-ray spectroscopy and electron backscatter diffraction. The formation of heteroepitaxially recrystallized grains is observed within the intermediate-misfit γ–γ′ superalloy LSHR; this suggests the HeRX is more widespread than initially thought. Microstructural imaging indicates that the presence of a coherent γ shell formed via inverse precipitation is not a necessary condition for the nucleation of HeRX grains. HeRX grains are found to comprise the large grain tail of the grain size distribution, regardless of processing condition. The extent of HeRX grain formation and growth in LSHR is determined as a function of strain, forging rate, and thermal history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  2. D. Furrer, H. Fecht, JOM. 51(1), 14–17 (1999)

    Article  CAS  Google Scholar 

  3. Y. Combres, C. Levaillant, Int. J. Plast. 6(5), 505–519 (1990)

    Article  CAS  Google Scholar 

  4. S.L. Semiatin, K.E. McClary, A.D. Rollett, C.G. Roberts, E.J. Payton, F. Zhang, T.P. Gabb, Metall. Mater. Trans. A. 44A(5), 2778–2798 (2013)

    Article  Google Scholar 

  5. S.L. Semiatin, D.S. Weaver, R.C. Kramb, P.N. Fagin, M.G. Glavicic, R.L. Goetz, N.D. Frey, M.M. Antony, Metall. Mater. Trans. A. 35(2), 679–693 (2004)

    Article  Google Scholar 

  6. J.-P.A. Immarigeon, P.H. Floyd, Metall. Trans. A. 12(7), 1177–1186 (1981)

    Article  CAS  Google Scholar 

  7. A. Koul, J.-P. Immarigeon, Acta Metall. 35(7), 1791–1805 (1987)

    Article  CAS  Google Scholar 

  8. Lindsley and X. Pierron, in Superalloys 2000 (Ninth International Symposium), TMS, 2000 pp. 59–68

  9. P. Poelt, C. Sommitsch, S. Mitsche, M. Walter, Mater. Sci. Eng., A. 420(1–2), 306–314 (2006)

    Article  Google Scholar 

  10. B. **e, B. Zhang, Y. Ning, M.W. Fu, J. Alloy. Compd. 786, 636–647 (2019)

    Article  CAS  Google Scholar 

  11. F.J. Humphreys, Acta Metall. 25(11), 1323–1344 (1977)

    Article  CAS  Google Scholar 

  12. F.J. Humphreys, Metal Science. 13(3–4), 3–4 (1979)

    Google Scholar 

  13. F.J. Humphreys, Acta Metall. 27(12), 1801–1814 (1979)

    Article  CAS  Google Scholar 

  14. F. Li, R. Fu, F. Yin, D. Feng, H. Wang, G. Du, Y. Feng, J. Alloy. Compd. 693, 1076–1082 (2017)

    Article  CAS  Google Scholar 

  15. H.-Z. Li, L. Yang, Y. Wang, G. Tan, S.-C. Qiao, Z.-Q. Huang, M.-X. Liu, Mater. Charact. 163, 110285 (2020)

    Article  CAS  Google Scholar 

  16. M.-A. Charpagne, T. Billot, J.-M. Franchet, N. Bozzolo, J. Alloy. Compd. 688, 685–694 (2016)

    Article  CAS  Google Scholar 

  17. M.-A. Charpagne, T. Billot, J.-M. Franchet, and N. Bozzolo, in Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys, 2016, pp. 417–426.

  18. M.-A. Charpagne, P. Venne´gue`s, T. Billot, J.-M. Franchet, N. Bozzolo, J. Microsc. 263(1), 106–112 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. S. Katnagallu, S. Vernier, M.-A. Charpagne, B. Gault, N. Bozzolo, P. Kontis, Scripta Mater. 191, 7–11 (2021)

    Article  CAS  Google Scholar 

  20. V. Miller, E. Payton, A. Pilchak, Scripta Mater. 136, 128–131 (2017)

    Article  CAS  Google Scholar 

  21. T. Gabb: Comparison of [gamma-gamma] prime phase coarsening responses of three powder metal disk superalloys, NASA technical memorandum, National Aeronautics and Space Administration, Glenn Research Center, 2016.

  22. G. Olson, H.-J. Jou, J. Jung, J. Sebastian, A. Misra, I. Locci, and D. Hull, in Superalloys 2008, TMS (The Minerals, Metals & Materials Society), 2008 pp. 923–932.

  23. S.L. Semiatin, K.E. McClary, A.D. Rollett, C.G. Roberts, E.J. Payton, F. Zhang, T.P. Gabb, Metall. Mater. Trans. A. 43(5), 1649–1661 (2012)

    Article  CAS  Google Scholar 

  24. Thermo-Calc Software AB: TCNI9/Ni-Alloys database version 9.1, 2019.

  25. F. Bachmann, R. Hielscher, H. Schaeben, Solid State Phenom. 160, 63–68 (2010)

    Article  CAS  Google Scholar 

  26. S. Vernier, J.-M. Franchet, M. Lesne, T. Douillard, J. Silvent, C. Langlois, N. Bozzolo, Mater. Charact. 142, 492–503 (2018)

    Article  CAS  Google Scholar 

  27. S. Vernier, J.-M. Franchet, C. Dumont, N. Bozzolo, Metall. Mater. Trans. A. 49(9), 4308–4323 (2018)

    Article  CAS  Google Scholar 

  28. L. N. Brewer, D. P. Field, and C. C. Merriman, in Electron Backscatter Diffraction in Materials Science, pp. 251–262, 2009.

  29. M.R. O’Masta, E.C. Clough, J.H. Martin, Comput. Mater. Sci. 192, 110317 (2021)

    Article  Google Scholar 

  30. F. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Pergamon, Oxford, 2004)

    Google Scholar 

  31. L.P. Troeger, E.A. Starke Jr., Mater. Sci. Eng. A. 293(1), 19–29 (2000)

    Article  Google Scholar 

  32. S. Balachandran, S. Kumar, D. Banerjee, Acta Mater. 131, 423–434 (2017)

    Article  CAS  Google Scholar 

  33. Z. Zou, M. Simonelli, J. Katrib, G. Dimitrakis, R. Hague, Scripta Mater. 180, 66–70 (2020)

    Article  CAS  Google Scholar 

  34. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, Nature. 549(7672), 365–369 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge B. Dowdell (NCSU) for the early stage SEM/EBSD data collection, and P. Fagin (AFRL and UES, Inc.) for assistance with mechanical testing and S. L. Semiatin (AFRL) for helpful discussions, as well as A. Pilchak (AFRL/RXCM), J. Shank (AFRL and UES Inc.), and J. Craggette (SOCHE and Wright State University) for assistance with DEFORM simulations and data visualizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Hershkovitz, E., Kim, H. et al. Prevalence of Heteroepitaxial Recrystallization in the Low Solvus High Refractory (LSHR) γ–γ′ Superalloy. Metallogr. Microstruct. Anal. 13, 114–129 (2024). https://doi.org/10.1007/s13632-023-01036-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-023-01036-z

Keywords

Navigation