Log in

An Evaluation of WC-Co Tool Tip Scraps Reinforcement in the Hadfield Austenitic Manganese Steel Fabricated In Situ Steel Casting

  • Original Research Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Research on the use of WC-Co tool tip scraps inserts into Hadfield austenitic manganese steel was conducted to enhance the wear resistance of a material and utilize WC-Co tool tip scraps for mining industry applications fabricated using in situ metal casting. Microstructure, mechanical properties, and wear resistance were investigated in this study. The results of microstructure observations revealed that austenite grains near the interface region had a grain size of G 4.16. However, as the distance of the austenite grains from the interface increased, the grain size of austenite also increased and had a value of G 1.02. The interface zone between WC-Co and Hadfield austenitic manganese steel exhibited scattered agglomerates of WC-Co particles that detached from the main body, allowing for the infiltration of liquid metal inside the WC-Co tool tip scraps. The hardness testing results in the interface region showed lower values compared to the WC-Co tool tip scraps, with a hardness value of 612 VHN. Meanwhile, the hardness in the base metal region tended to decrease as the distance from the interface increased. The material with the addition of WC-Co tool tip scraps exhibited improved wear resistance compared to the wear in the base steel region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.I. Denisenko, V.A. Maslyuk, R.V. Yakovenko, Reinforced powder chromium steels and their use for the hardening of feed mill hammers. Powder Metall. Met. Ceram. 57(11), 740–746 (2019). https://doi.org/10.1007/s11106-019-00039-2

    Article  CAS  Google Scholar 

  2. H. Liu, S. Fan Rong, Wu.Y. He, P. Hui Yang, X. Lan Duan, Y. Chang Zhu, Study on diagonal hammer of three kind metals composite casting with block protecting handle. MATEC Web Confer. 63, 03011 (2016). https://doi.org/10.1051/matecconf/20166303011

    Article  Google Scholar 

  3. X.M. Zhao, H.T. Zhou, S.F. Rong, B.G. Yang, C.H. Li, Research on the new combined type crusher hammer. Appl. Mech. Mater. 488, 1160–1164 (2014). https://doi.org/10.4028/www.scientific.net/AMM.488-489.1160

    Article  CAS  Google Scholar 

  4. S.R. Allahkaram, Causes of catastrophic failure of high Mn steel utilized as crusher overlaying shields. Int. J. Eng. 21(1), 55–64 (2008)

    Google Scholar 

  5. S. W. Bhero, B. Nyembe, K. Lentsoana, Common causes of premature failure of Hadfield steel crushers and hammers used in the mining industry. in International Conference on Mining, Mineral Processing and Metallurgical Engineering 174-175 (2013)

  6. F. Haakonsen, Optimizing of strømhard austenitic manganese steel. Doctoral Thesis, Available from NTNU Institutt for materialteknologi. Thesis completed (2009)

  7. C. Okechukwu, O.A. Dahunsi, P.K. Oke, I.O. Oladele, M. Dauda, Development of hardfaced crusher jaws using ferro-alloy hardfacing inserts and low carbon steel substrate. J. Tribol. 18, 20–39 (2018)

    Google Scholar 

  8. I. Hutchings, P. Shipway, Tribology: friction and wear of engineering materials. Butterworth–Heinemann (2017)

  9. E. Olejnik, P. Batóg, T. Tokarski, P. Kurtyka, TiC-FeCr local composite reinforcements obtained in situ in steel casting. J. Mater. Process. Tech. 275, 116157 (2020). https://doi.org/10.1016/j.jmatprotec.2019.03.017

    Article  CAS  Google Scholar 

  10. Y. Song, H. Wang, High speed sliding wear behavior of recycled WCP-reinforced ferrous matrix composites fabricated by centrifugal cast. Wear. 276, 105–110 (2012). https://doi.org/10.1016/j.wear.2011.12.017

    Article  CAS  Google Scholar 

  11. C. Efstathiou, H. Sehitoglu, Strain hardening and heterogeneous deformation during twinning in hadfield steel. Acta Mater. 58(5), 1479–1488 (2010). https://doi.org/10.1016/j.actamat.2009.10.054

    Article  CAS  Google Scholar 

  12. M.K. El-Fawakhry, I. Salem, A.A. El-Amir, T.M. Mattar, Ceramic metal composite approach for the advanced hadfield steel. J. Phys. Confer. Ser. 2047(1), 012010 (2021)

    Article  Google Scholar 

  13. T. Kıvak, E. Ekici, G. Uzun, The experimental and statistical investigation of the effects of cutting parameters and coating materials on the machinability of Hadfield steel. Gazi Univ. J. Sci. 29(1), 9–17 (2016)

    Google Scholar 

  14. E. Kuljanic, M. Sortino, G. Totis, F. Prosperi, Evaluation of commercial tools for machining special-alloy hadfield steel. Int. Virtual J. Sci. Tech. Innov. Ind. Mach. Technol. Mater. 1, 96–99 (2012)

    Google Scholar 

  15. J.O. Olawale, S.A. Ibitoye, M.D. Shittu, Workhardening behaviour and microstructural analysis of failed austenitic manganese steel crusher jaws. Mater. Res. 16, 1274–1281 (2013)

    Article  Google Scholar 

  16. W. Purwadi, B. Bandanadjaja, D. Idamayanti, N. Lilansa, Consecutive casting of iron bimetal with low-carbon steel interface plate. Arch. Foundry Eng. (2020). https://doi.org/10.24425/afe.2020.131289

    Article  Google Scholar 

  17. P. Skoczylas, A. Krzyńska, M. Kaczorowski, The comparative studies of ADI versus Hadfield cast steel wear resistance. Arch. Foundry Eng. 11(2), 123–212 (2011)

    CAS  Google Scholar 

  18. J. Du, X. Chong, Y. Jiang, J. Feng, Numerical simulation of mold filling process for high chromium cast iron matrix composite reinforced by ZTA ceramic particles. Int. J. Heat Mass Transf. 89, 872–883 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.046

    Article  CAS  Google Scholar 

  19. H. Vasudev, Hardfaced layer on mild steel made by paste technique with SMAW electrode to improve surface properties. Int. J. Adv. Res. Ideas Innov. Technol. 1(1), 1–7 (2014)

    Google Scholar 

  20. M. Vrabeľ, J. Viňáš, I. Maňková, J. Brezinová, B. Savkovič, P. Kovač, Analysis of tool wear patterns in rough turning of chromium hardfacing material. J. Prod. Eng. 20, 35–38 (2017). https://doi.org/10.24867/JPE-2017-01-035

    Article  Google Scholar 

  21. S. Venkateswaran, W.D. Schubert, B. Lux, M. Ostermann, B. Kieffer, W-scrap recycling by the melt bath technique. Int. J. Refrac. Met. Hard Mater. 14(4), 263–270 (1996). https://doi.org/10.1016/0263-4368(95)00055-0

    Article  CAS  Google Scholar 

  22. M. Li, X. **, Z. Nie, L. Ma, Q. Liu, Recovery of tungsten from WC–Co hard metal scraps using molten salts electrolysis. J. Mater. Res. Technol. 8(1), 1440–1450 (2019). https://doi.org/10.1016/j.jmrt.2018.10.010

    Article  CAS  Google Scholar 

  23. C. Edtmaier, R. Schiesser, C. Meissl, W.D. Schubert, A. Bock, A. Schön, B. Zeiler, Selective removal of the cobalt binder in WC/Co based hardmetal scraps by acetic acid leaching. Hydrometall. 76(1–2), 63–71 (2005). https://doi.org/10.1016/j.hydromet.2004.09.002

    Article  CAS  Google Scholar 

  24. S. Kim, B. Seo, S.H. Son, Dissolution behavior of cobalt from WC–Co hard metal scraps by oxidation and wet milling process. Hydrometall. 143, 28–33 (2014). https://doi.org/10.1016/j.hydromet.2014.01.004

    Article  CAS  Google Scholar 

  25. B. Seo, S. Kim, Cobalt extraction from tungsten carbide-cobalt (WC-Co) hard metal scraps using malic acid. Int. J. Miner. Process. 151, 1–7 (2016). https://doi.org/10.1016/j.minpro.2016.04.002

    Article  CAS  Google Scholar 

  26. G.G. Lee, H.S. Kwon, G.H. Ha, Oxidation kinetics of WC–Co hard metal alloy. J. Korean Powder Metall. Inst. 11(2), 111–117 (2004)

    Article  Google Scholar 

  27. W.G. Jung, Recovery of tungsten carbide from hard material sludge by oxidation and carbothermal reduction process. J. Ind. Eng. Chem. 20(4), 2384–2388 (2014). https://doi.org/10.1016/j.jiec.2013.10.017

    Article  CAS  Google Scholar 

  28. B. Casas, X. Ramis, M. Anglada, J.M. Salla, L. Llanes, Oxidation-induced strength degradation of WC–Co hardmetals. Int. J. Refrac. Met. Hard Mater. 19(4–6), 303–309 (2001). https://doi.org/10.1016/S0263-4368(01)00033-6

    Article  CAS  Google Scholar 

  29. V.B. Voitovich, V.V. Sverdel, R.F. Voitovich, E.I. Golovko, Oxidation of WC-Co, WC-Ni and WC-Co-Ni hard metals in the temperature range 500–800 C. Int. J. Refrac. Met. Hard Mater. 14(4), 289–295 (1996). https://doi.org/10.1016/0263-4368(96)00009-1

    Article  CAS  Google Scholar 

  30. W.H. Gu, Y.S. Jeong, K. Kim, J.C. Kim, S.H. Son, S. Kim, Thermal oxidation behavior of WC–Co hard metal machining tool tip scraps. J. Mater. Process. Technol. 212(6), 1250–1256 (2012). https://doi.org/10.1016/j.jmatprotec.2012.01.009

    Article  CAS  Google Scholar 

  31. C. Ruskandi, D.F. Undayat, G.N. Hermana, M.R.G. Nadi, W. Purwadi, Study on thermal behaviour of tungsten cemented carbide tip scraps. in 6th Mechanical Engineering, Science and Technology International Conference (MEST 2022). 107-113 (2023)

  32. A.C. Cuevas, E.B. Becerril, M.S. Martínez, J.L. Ruiz, Metal matrix composites (Springer Nature, Switzerland, 2018)

    Book  Google Scholar 

  33. A.B. Moreira, L.M. Ribeiro, M.F. Vieira, Cast ferrous alloys reinforced with WC-metal matrix composites fabricated by ex-situ methods, 3rd edn (Prime Archives in Material Science, Khan, MI, 2021)

    Google Scholar 

  34. K.M. Sree Manu, L. Ajay Raag, T.P.D. Rajan, M. Gupta, B.C. Pai, Liquid metal infiltration processing of metallic composites: a critical review. Metall. Mater. Trans. B. 47(5), 2799–2819 (2016). https://doi.org/10.1007/s11663-016-0751-5

    Article  CAS  Google Scholar 

  35. S.L. Tang, Y.M. Gao, Y.F. Li, Recent developments in fabrication of ceramic particle reinforced iron matrix wear resistant surface composite using infiltration casting technology. Ironmak. Steelmak. 41(8), 633–640 (2014). https://doi.org/10.1179/1743281213Y.0000000175

    Article  CAS  Google Scholar 

  36. ASTM. ASTM E112: Standard test methods for determining average grain size. ASTM International, USA (2021)

  37. A.K. Srivastava, K. Das, In-situ synthesis and characterization of tic-reinforced Hadfield manganese austenitic steel matrix composite. ISIJ Int. 49(9), 1372–1377 (2009). https://doi.org/10.2355/isi**ternational.49.1372

    Article  CAS  Google Scholar 

  38. T. Kresse, D. Meinhard, T. Bernthaler, G. Schneider, Hardness of WC-Co hard metals: preparation, quantitative microstructure analysis, structure-property relationship and modelling. Int. J. Refrac. Met. Hard Mater. 75, 287–293 (2018). https://doi.org/10.1016/j.ijrmhm.2018.05.003

    Article  CAS  Google Scholar 

  39. A.K. Srivastava, K. Das, Microstructural characterization of hadfield austenitic manganese steel. J. Mater. Sci. 43(16), 5654–5658 (2008). https://doi.org/10.1007/s10853-008-2759-y

    Article  CAS  Google Scholar 

  40. S. Hosseini, M.B. Limooei, M.H. Zade, E. Askarnia, Z. Asadi, Optimization of heat treatment due to austenising temperature, time and quenching solution in hadfield steels. Int. J. Mater. Metall. Eng. 7(7), 582–585 (2013)

    Google Scholar 

  41. M. Sabzi, M. Farzam, Hadfield manganese austenitic steel: a review of manufacturing processes and properties. Mater. Res. Express. 6(10), 1065c2 (2019). https://doi.org/10.1088/2053-1591/ab3ee3

    Article  CAS  Google Scholar 

  42. B. Zorc, A. Nagode, B. Kosec, L. Kosec, Analysis of weld cracking in shotblasting chambers made of hadfield steel. Eng. Fail. Anal. 33, 48–54 (2013). https://doi.org/10.1016/j.engfailanal.2013.04.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Ministry of Education, Culture, Research, and Technology, Indonesia. The author is also thankful for the help from Bandung Polytechnic for Manufacturing.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and analysis were performed by GNH, MRGN, and WP. Data collection were performed by CR, DFU, and AS. The first draft of the manuscript was written by GNH, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gita Novian Hermana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadi, M.R.G., Hermana, G.N., Purwadi, W. et al. An Evaluation of WC-Co Tool Tip Scraps Reinforcement in the Hadfield Austenitic Manganese Steel Fabricated In Situ Steel Casting. Metallogr. Microstruct. Anal. 12, 802–808 (2023). https://doi.org/10.1007/s13632-023-01005-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-023-01005-6

Keywords

Navigation