Log in

Study on Equilibrium and Non-equilibrium Solidification of Boron-Containing High-Speed Tool Steel: Effect of Cooling Rate and Microstructure Investigation

  • Peer-Reviewed Paper
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

This work intends to understand the microstructure evolution of new and enhanced boron-containing high-speed tool steel. The solidification reactions of investigated steels are discussed under equilibrium and non-equilibrium conditions. The Thermo-Calc program was utilized to predict the microstructure characteristics of studied high-speed tool steel in equilibrium conditions. On the other hand, the Schiel-Gulliver simulation model was applied to explore the influence of the cooling rate on the microstructure of the examined steel produced under non-equilibrium conditions. The effect of boron addition and production conditions (equilibrium and non-equilibrium) on microstructure evolution and their effect on hardness and wear resistance were discussed. The results demonstrate that both variations of boron contents and production conditions affect the solidification reaction sequences and the volume fraction of different phases and their types. The microstructure of the boron-containing steel is well homogenous distributed, dense, and higher ferrite volume fractions change with boron contents. The boron-containing steel is characterized by resistance to wear, about 117 and 230% of standard AISIM2 tool steel in equilibrium and non-equilibrium production conditions, respectively. The Expected Life Cycle Cost Analysis of the innovative boron-containing AISIM2 high speed tool steel is summarized as the following: The total production cost per part is reduced by 10–20% due to the double working lifetime of the innovative boron-containing AISIM2 high speed tool steel. Double-cutting feed cuts cost by a further 10–15%, so the total reduced production cost per produced material is 20–40%. Tool replacing, which causes production stops and is often due to broken tools, is reduced to 30%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that has been used is available for sharing.

References

  1. H.O. Andren, Ş Karagöz, C. Guang-Jun, L. Lundin, H.F. Fischmeister, Carbide precipitation in chromium steels. Surf. Sci. 246, 246–251 (1991)

    Article  CAS  Google Scholar 

  2. S. Karagoz, H.F. Fischmeister, Cutting performance and microstructure of high-speed steels: contributions of matrix strengthening and undissolved carbides. Metall. Mater. Trans. A. 29(1), 205–216 (1998). https://doi.org/10.1007/s11661-998-0173-3

    Article  Google Scholar 

  3. K. Sinha, Physical metallurgy handbook. McGraw-Hill (2003).

  4. E. Keehan, L. Karlsson, H.O. Andrén, H.K.D.H. Bhadeshia, Influence of carbon, manganese, and nickel on microstructure and properties of strong steel weld metals: part 3–increased strength resulting from carbon additions. Sci. Technol. Weld. Join. 11(1), 19–24 (2006). https://doi.org/10.1179/174329306X77858

    Article  CAS  Google Scholar 

  5. Kalandyk and J. Kasińska, Effects of rare earth metal addition on wear resistance of chromium-molybdenum cast steel. Archives Found. Eng. (2017).

  6. M.S. Kim, W.J. Oh, G.Y. Baek, Y.K. Jo, K.Y. Lee, S.H. Park, D.S. Shim, Ultrasonic nanocrystal surface modification of high-speed tool steel (AISI M4) layered via direct energy deposition. J. Mater. Proc. Technol. (2020). https://doi.org/10.1016/j.jmatprotec.2019.116420

    Article  Google Scholar 

  7. P. Jovičević-Klug, B. Podgornik, Comparative study of conventional and deep cryogenic treatment of AISI M3: 2 (EN 1. 3395) high-speed steel. J. Mater. Res. Technol. 9(6), 3118–13127 (2020). https://doi.org/10.1016/j.jmrt.2020.09.071

    Article  CAS  Google Scholar 

  8. H. Peng, L. Hu, T. Ngai, L. Li, X. Zhang, H. **e, W. Gong, Effects of austenitizing temperature on microstructure and mechanical property of a 4-GPa-grade PM high-speed steel. Mater. Sci. Eng. A. (2018). https://doi.org/10.1016/j.msea.2018.02.010

    Article  Google Scholar 

  9. Michalcová, V. Pečinka, Z. Kačenka, J. Šerák, J. Kubásek, P. Novák, D. Vojtěch, Microstructure, mechanical properties, and thermal stability of carbon-free high-speed tool steel strengthened by intermetallics compared to Vanadis 60 Steel Strengthened by carbides. Metals. 11(12), 1901 (2021). https://doi.org/10.3390/met11121901

    Article  CAS  Google Scholar 

  10. P. Jovičević-Klug, G. Puš, M. Jovičević-Klug, B. Žužek, B. Podgornik, Influence of heat treatment parameters on the effectiveness of deep cryogenic treatment on properties of high-speed steels. Mat. Sci. Eng. A. (2022). https://doi.org/10.1016/j.msea.2021.142157

    Article  Google Scholar 

  11. Q.X. Dai, A.D. Wang, X.N. Cheng, L. Cheng, Effect of alloying elements and temperature on strength of cryogenic austenitic steels. Mater. Sci. Eng. A. 311(1–2), 205–210 (2001). https://doi.org/10.1016/S0921-5093(00)01796-2

    Article  Google Scholar 

  12. E. Bayer, HIP-tool materials, powder metallurgy. International. 16(3), 117–120 (1984)

    CAS  Google Scholar 

  13. H.A. Garner, G.J. Del Corso, Powder metallurgy tool steels. Adv. Mater. Processes. 149(4), 25–27 (1996)

    CAS  Google Scholar 

  14. L.A. Dobrzański, M. Adamiak, G.E. D’Errico, Relationship between erosion resistance and the phase and chemical composition of PVD coatings deposited onto high-speed steel. J. Mater. Proc. Technol. 2–93(30), 184–189 (1999). https://doi.org/10.1016/S0924-0136(99)00185-5

    Article  Google Scholar 

  15. L.A. Dobrzański, M. Adamiak, Structure and properties of the TiN and Ti(C, N) coatings deposited in the PVD process on high-speed steels. J. Mater. Proc. Technol. 133(1–2), 50–62 (2003). https://doi.org/10.1016/S0924-0136(02)00244-3

    Article  Google Scholar 

  16. L.A. Dobrzański, M. Adamiak, The structure and properties of PVD coated PM high-speed steels. Key Eng. Mater. (2001). https://doi.org/10.4028/www.scientific.net/KEM

    Article  Google Scholar 

  17. L.A. Dobrzański, A. Zarychta, M. Ligarski, High-speed steels with the addition of niobium or titanium. J. Mater. Proc. Technol. 63(1–3), 531–541 (1997). https://doi.org/10.1016/S0924-0136(96)02678-7

    Article  Google Scholar 

  18. F. Pan, M. Hirohashi, Y. Lu, P. Ding, A. Tang, D.V. Edmonds, Carbides in high-speed steels containing silicon. Metall. and Mater. Trans. A. 35(9), 2757–2766 (2004). https://doi.org/10.1007/s11661-004-0222-5

    Article  Google Scholar 

  19. Dobrzański, M. Ligarski, Role of Ti in the W-Mo-V high-speed steels, Proceedings of the 4th International Scientific Conference "Achieve. Mech. Mater. Eng. " AMME'95, Gliwice-Wisła, 87-90 (1995). https://doi.org/10.1016/S0924-0136(96)02558-7

  20. H. Halfa, Characterization of electroslag remelted super hard high-speed tool steel containing niobium. St. Res. Int. 84(5), 495–510 (2013). https://doi.org/10.1002/srin.201200332

    Article  CAS  Google Scholar 

  21. H. Fischmeister, Ş Karagöz, H.O. Andren, An atom probe study of secondary hardening in high-speed steels. Acta Metall. 36(4), 817–825 (1988). https://doi.org/10.1016/0001-6160(88)90136-8

    Article  CAS  Google Scholar 

  22. H. Halfa, Microstructure–wear resistance relationship of nitrogen-containing high-speed tool steel, AISIM41: non-equilibrium solidification. Metallograp. Microstruc. Anal. 11(3), 495–512 (2022). https://doi.org/10.1007/s13632-022-00851-0

    Article  CAS  Google Scholar 

  23. H. Halfa, A.H. Seikh, H.S. Abdo, I.A. Alnaser, M.S. Soliman, S.M. Ragab, Study on the microstructure of vanadium-modified tungsten high-speed steel-coded SAE-AISI T1 steel. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/3469305

    Article  Google Scholar 

  24. H. Halfa, Thermodynamic calculation for silicon modified AISIM2 high-speed tool steel. J. Miner. Mater. Charact. Eng. 1(5), 257–270 (2013). https://doi.org/10.4236/jmmce.2013.15040

    Article  CAS  Google Scholar 

  25. M. Tabuchi, M. Kondo, K. Kubo, S.K. Albert, Improvement of type IV creep cracking resistance of 9Cr heat-resisting steels by boron addition. OMNI. 3(3), 1–11 (2004)

    Google Scholar 

  26. I. Mejía, E. López-Chipres, C. Maldonado, A. Bedolla-Jacuinde, J.M. Cabrera, Modeling of the hot deformation behavior of boron micro-alloyed steels under uniaxial hot-compression conditions. Int. J. Mater. Res. 99(12), 1336–1345 (2008). https://doi.org/10.3139/146.101771

    Article  Google Scholar 

  27. D.J. Mun, E.J. Shin, K.C. Cho, J.S. Lee, Y.M. Koo, Cooling rate dependence of boron distribution in low carbon steel. Metall. and Mater. Trans. A. 43, 1639–1648 (2012). https://doi.org/10.1007/s11661-011-0997-0

    Article  CAS  Google Scholar 

  28. B. Hwang, D.W. Suh, S.J. Kim, Austenitizing temperature and hardenability of low-carbon boron steels. Scripta Mater. 64(12), 1118–1120 (2011). https://doi.org/10.1016/j.scriptamat.2011.03.003

    Article  CAS  Google Scholar 

  29. A.A. Akberdin, A.S. Kim, R.B. Sultangaziev, Analysis of the chemical transformations in the BaO–B 2 O 3–C system. Russian Metallurgy (Metally). 2021, 1010–1015 (2021). https://doi.org/10.1134/S0036029521080024

    Article  Google Scholar 

  30. G.A. Baglyuk, L.A. Posnyak, Powder metallurgy wear-resistant materials based on iron. Part 2. Materials hot-pressed from porous compacts. Powder Metall. Met. Ceram. 40, 174–178 (2001). https://doi.org/10.1023/A:1011983623603

    Article  CAS  Google Scholar 

  31. H. Humadi, J.J. Hoyt, N. Provatas, Phase-field-crystal study of solute trap**. Phys. Rev. E. 87(2), 022404 (2013). https://doi.org/10.1103/PhysRevE.87.022404

    Article  CAS  Google Scholar 

  32. S.L. Sobolev, Effects of local non-equilibrium solute diffusion on rapid solidification of alloys. Phys. Status Solidi. 156, 293–303 (1996)

    Article  CAS  Google Scholar 

  33. B. Sundman, B. Jansson, J.O. Andersson, The thermo-Calc databank system. Calphad. 9(2), 153–190 (1985). https://doi.org/10.1016/0364-5916(85)90021-5

    Article  CAS  Google Scholar 

  34. B. Sundman, J. Ågren, A regular solution model for phases with several components and sublattices, suitable for computer applications. J. Phys. Chem. Sol. 42(4), 297–301 (1981). https://doi.org/10.1016/0022-3697(81)90144-X

    Article  CAS  Google Scholar 

  35. G.C. Coelho, J.A. Golczewski, H.F. Fischmeister, Thermodynamic calculations for Nb-containing high-speed steels and white-cast-iron alloys. Mater. Trans. A. 34(9), 1749–1758 (2003). https://doi.org/10.1007/s11661-003-0141-x

    Article  Google Scholar 

  36. Y.H. Zhou, The application and performance of diamond and pcbn tools in difficult-to-cut materials. Sol. Stat. Phenom. 263, 90–96 (2017). https://doi.org/10.4028/www.scientific.net/ssp.263.90

    Article  Google Scholar 

Download references

Acknowledgements

This work is achieved in the steel technology Dept., Central Metallurgical Research and Development Institute, CMRDI, Egypt.

Author information

Authors and Affiliations

Authors

Contributions

HH: Conceptualization, Supervision, Methodology, Writing – Original draft, Writing – Review & Editing, Investigation, Visualization, Formal analysis.

Corresponding author

Correspondence to Hossam Halfa.

Ethics declarations

Conflict of interest

The authors declare that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halfa, H. Study on Equilibrium and Non-equilibrium Solidification of Boron-Containing High-Speed Tool Steel: Effect of Cooling Rate and Microstructure Investigation. Metallogr. Microstruct. Anal. 12, 455–475 (2023). https://doi.org/10.1007/s13632-023-00965-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-023-00965-z

Keywords

Navigation