Log in

Texture Analysis and Fracture Behavior of Zircaloy-4 Processed Through Swaging

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Zirconium alloy (Zircaloy-4) was cold-worked using the swaging process and subsequently subjected to mechanical and microstructural characterization in the present work. The influence of feed rate (0.7, 1.25, 2 m/min) during swaging on phase analysis, tensile properties and fracture behavior of the alloy was investigated. The swaged Zircaloy-4 samples were annealed at 732 °C for 3 h holding time to study the microstructural evolution and changes in its fracture behavior. Tensile test results show the improved tensile strength and ductility in the case of 1.25 m/min feed rate. The three-point bend test was performed on swaged and annealed samples to study the fracture behavior of Zircaloy-4 alloys. The apparent fracture toughness value of swaged samples (76.20 MPa.m0.5 for 0.7 m/min, 69.22 MPa.m0.5 for 1.25 m/min, and 57.52 MPa.m0.5 for 2 m/min) and annealed samples (45.12 MPa.m0.5 for 0.7 m/min, 44.37 MPa.m0.5 for 1.25 m/min and 41.81 MPa.m0.5 for 2 m/min) are reported in this work. The result shows the higher fracture toughness for swaged samples due to higher dislocation density. The deformed and annealed Zircaloy-4 samples were characterized by scanning electron microscopy–electron backscattered diffraction (SEM–EBSD) to elucidate the fracture behavior as well as phase analysis of the alloy. Texture analysis was performed using EBSD on the samples subjected to swaging at different feed rates. It reveals different types of texture on swaged and annealed rod samples. The swaged samples show basal texture 〈0002〉, and annealed samples show combination of basal 〈0002〉 and prismatic \( \langle 10\bar{1}0\rangle \). Different types of textures are observed with varying feed rates and are found to be directly correlated with tensile and fracture properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.-L. Lin, K. An, A.D. Stoica, B.J. Heuser, Effect of external stress on deuteride (hydride) precipitation in Zircaloy-4 using in situ neutron diffraction. J. Nucl. Mater. 487, 396–405 (2017)

    Article  CAS  Google Scholar 

  2. S. Deng, H. Song, C. Zheng, T. Zhao, S. Zhang, K.B. Nielsen, Selection of deformation modes and related texture evolution in Zircaloy-4 during one pass cold pilgering. Mater. Sci. Eng. A 764, 138280 (2019)

    Article  CAS  Google Scholar 

  3. S.K. Singh, K. Limbadri, A.K. Singh, A.M. Ram, M. Ravindran, M. Krishna, M.C. Reddy, K. Suresh, K.S. Prasad, S.K. Panda, Studies on texture and formability of Zircaloy-4 produced by pilgering route. J. Mater. Res. Technol. 8(2), 2120–2129 (2019)

    Article  CAS  Google Scholar 

  4. C. Zhang, Y. Yang, Y. Zhang, J. Liu, L. You, X. Song, Study of the microstructure evolution of zirconium alloy during deuterium absorption at high temperature. J. Nucl. Mater. 493, 448–459 (2017)

    Article  CAS  Google Scholar 

  5. D. Fuloria, P. Nageswararao, R. Jayaganthan, S. Jha, D. Srivastava, An investigation of deformed microstructure and mechanical properties of Zircaloy-4 processed through multiaxial forging. Mater. Chem. Phys. 173, 12–25 (2016)

    Article  CAS  Google Scholar 

  6. I. Altenberger, H.A. Kuhn, M. Gholami-Kermanshahi, M. Mhaede, M. Wollmann, L. Wagner, Ultrafine-Grained High Strength Cu-Ni-Si Alloys. Mater. Sci. Forum 892, 64–69 (2017)

    Article  Google Scholar 

  7. J. Palán, T. Kubina, P. Motyčka, The effect of annealing on mechanical and structural properties of UFG titanium grade 2. IOP Conf. Ser. Mater. Sci. Eng. 179, 012055 (2017)

    Article  Google Scholar 

  8. E.A. El-Danaf, M.A. Abdulstaar, N.S. Waluyo, L. Wagner, Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties, in Conference Proceedings (2013)

  9. A. Belyakov, K. Tsuzaki, Y. Kimura, Y. Mishima, Annealing behavior of a ferritic stainless steel subjected to large-strain cold working. J. Mater. Res. 22(11), 3042–3051 (2007)

    Article  CAS  Google Scholar 

  10. Y. Liu, M. Herrmann, C. Schenck, B. Kuhfuss, Plastic deformation components in mandrel free infeed rotary swaging of tubes. Procedia Manuf. 27, 33–38 (2019)

    Article  Google Scholar 

  11. M.A. Abdulstaar, E.A. El-Danaf, N.S. Waluyo, L. Wagner, Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties. Mater. Sci. Eng. A 565, 351–358 (2013)

    Article  CAS  Google Scholar 

  12. K.L. Murty, I. Charit, Texture development and anisotropic deformation of zircaloys. Prog. Nucl. Energy 48(4), 325–359 (2006)

    Article  CAS  Google Scholar 

  13. K.V.M. Krishna, S.K. Sahoo, I. Samajdar, S. Neogy, R. Tewari, D. Srivastava, G.K. Dey, G.H. Das, N. Saibaba, S. Banarjee, Microstructural and textural developments during Zircaloy-4 fuel tube fabrication. J. Nucl. Mater. 383(1), 78–85 (2008)

    Article  CAS  Google Scholar 

  14. F. Long, D. Kerr, G. Domizzi, Q. Wang, M.R. Daymond, Microstructure characterization of a hydride blister in Zircaloy-4 by EBSD and TEM. Acta Mater. 129, 450–461 (2017)

    Article  CAS  Google Scholar 

  15. R.A. Lebensohn, M.I. González, C.N. Tomé, A.A. Pochettino, Measurement and prediction of texture development during a rolling sequence of Zircaloy-4 tubes. J. Nucl. Mater. 229, 57–64 (1996)

    Article  CAS  Google Scholar 

  16. M. Ashida, M. Morita, Y. Tsutsumi, N. Nomura, H. Doi, P. Chen, T. Hanawa, Effects of cold swaging on mechanical properties and magnetic susceptibility of the Zr–1Mo alloy. Metals 8(6), 454 (2018)

    Article  Google Scholar 

  17. K. Vaibhaw, S.V.R. Rao, S.K. Jha, N. Saibaba, R.N. Jayaraj, Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors. J. Nucl. Mater. 383(1), 71–77 (2008)

    Article  CAS  Google Scholar 

  18. J. Singh, S. Mahesh, G. Kumar, P. Pant, D. Srivastava, G.K. Dey, N. Saibaba, I. Samajdar, Texture development and plastic deformation in a pilgered Zircaloy-4 tube. Metall. Mater. Trans. A 46(5), 1927–1947 (2015)

    Article  CAS  Google Scholar 

  19. Y.N. Wang, J.C. Huang, Texture analysis in hexagonal materials. Mater. Chem. Phys. 81(1), 11–26 (2003)

    Article  CAS  Google Scholar 

  20. Y. Idrees, E.M. Francis, Z. Yao, A. Korinek, M.A. Kirk, M. Sattari, M. Preuss, M.R. Daymond, Effects of alloying elements on the formation of <c>-component loops in Zr alloy Excel under heavy ion irradiation. J. Mater. Res. 30(9), 1310–1334 (2015)

    Article  CAS  Google Scholar 

  21. V.M. Allen, M. Preuss, J.D. Robson, R.J. Comstock, Evolution of Texture in zirconium alloy tubing during processing. Mater. Sci. Forum 495–497, 675–680 (2005)

    Article  Google Scholar 

  22. B.A. Cheadle, C.E. Ells, W. Evans, The development of texture in zirconium alloy tubes. J. Nucl. Mater. 23(2), 199–208 (1967)

    Article  CAS  Google Scholar 

  23. S. Neogy, S. Acharya, K.V. Mani Krishna, D. Srivastava, G.K. Dey, C. Phani Babu, G. Das, B. Raut, R.K. Chaube, S.K. Jha, B. Prahlad, N. Saibaba, A. Kumar, I. Samajdar, Texture and microstructure development during swaging and annealing process of fabrication of Zircaloy-4 rod products. Mater. Sci. Forum 702–703, 830–833 (2012)

    Google Scholar 

  24. S. Goel, R. Jayaganthan, I.V. Singh, D. Srivastava, G.K. Dey, N. Saibaba, Texture Evolution and Ultrafine Grain Formation in Cross-Cryo-Rolled Zircaloy-2. Acta Metall. Sin. (Engl. Lett.) 28(7), 837–846 (2015)

    Article  CAS  Google Scholar 

  25. ASTM E8M-13(2013), Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, www.astm.org (2013)

  26. ASTM 1820-17a(2017), Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA, www.astm.org (2017)

  27. ASTM E399-90(1997), Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM International, West Conshohocken, PA, www.astm.org (1997)

Download references

Acknowledgments

The authors would like to thank Board of Research in Nuclear Sciences (BRNS), Mumbai, India, for sponsoring this work. This research was funded by Board of Research in Nuclear Sciences (BRNS), Mumbai, India (Grant No. EDD/16/17/034/BRNS/RJAG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayaganthan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Jayaganthan, R., Arora, U.K. et al. Texture Analysis and Fracture Behavior of Zircaloy-4 Processed Through Swaging. Metallogr. Microstruct. Anal. 9, 273–284 (2020). https://doi.org/10.1007/s13632-020-00634-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-020-00634-5

Keywords

Navigation