Log in

On the Enhancement of the Microstructure and Tensile Properties of an Al–Cu Based Cast Alloy

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The present work was carried out on an Al–Cu alloy containing 6.5%Cu, 0.1%Si, 0.4%Mn, and 0.18%Zr (coded HT200). The investigations included hot-tearing tests, microstructural characterization, and tensile properties at room temperature (25 °C). The results were interpreted in terms of application of grain refiner, solidification rate, and phase precipitation. Grain refining using TiBor (0.15%Ti) coupled with high solidification rate (~ 8 °C/s) is proven to be very effective in reducing the alloy hot-tearing sensitivity to be equal to that of A319 alloy with an average grain size of ~ 50–80 µm. In contrast to A319 alloy, the present HT200 alloy required a single step solutionizing treatment (4 h at 520 °C) followed by water quenching to achieve maximum dissolution of the Cu phase. The alloy also exhibited a fast response to aging treatment, resulting in a significant improvement in the alloy tensile strength and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H.W. Doty, F.H. Samuel, A.M. Nabawy, Cast metal treatment in the molten state to eliminate hot tear defects in low-silicon Al–Cu alloys (GM Global Technology Operations, Inc., Detroit, 2009), p. 16

    Google Scholar 

  2. S. Li, D. Apelian, K. Sadayappan, Hot tearing in cast Al alloys: mechanisms and process controls. Int. J. Metalcast. 6, 51–58 (2012)

    Article  Google Scholar 

  3. A.M. Nabawy, A.M. Samuel, F.H. Samuel, H.W. Doty, Effect of Zr addition and aging treatment on the performance of Al–2%Cu base alloys, in Transactions of the American Foundry Society, Volume 117; 113th Metalcasting Congress, 710 April 2009, Las Vegas, Nevada (American Foundry Society, Las Vegas, 2009), pp. 209–223

  4. A.M. Nabawy, A.M. Samuel, F.H. Samuel, H.W. Doty, Zirconium–scandium interactions in Al–2Cu base alloy, in Transactions of the American Foundry Society, Volume 118; 114th Metalcasting Congress, 2023 March, 2010, CastExpo’10, Orlando, Florida (American Foundry Society, Orlando, 2010), pp. 99–113

  5. J. Borland, Generalized theory of super-solidus cracking in welds and castings. Br. Weld. J. 7(8), 508–512 (1960)

    Google Scholar 

  6. W. Pumphrey, P. Jennings, A consideration of the nature of brittleness at temperature above the solidus in castings and welds in aluminum alloys. J. Inst. Met. 75, 235 (1948)

    CAS  Google Scholar 

  7. W. Pellini, Strain theory of hot tearing. Foundry 80, 124–199 (1952)

    Google Scholar 

  8. M. Uludağa, R. Çetin, D. Dispinar, M. Tiryakioğlu, The effects of degassing, grain refinement & Sr-addition on melt quality-hot tear sensitivity relationships in cast A380 aluminum alloy. Eng. Fail. Anal. 90, 90–102 (2018)

    Article  Google Scholar 

  9. H. Ammar, Influence of metallurgical parameters on the mechanical properties and quality indices of Al–Si–Cu–Mg and Al–Si–Mg casting alloys, Ph.D. Thesis, Université du Québec à Chicoutimi, 2010

  10. G.H. Garza-Elizondo, Effect of Ni, Mn, Zr and Sc additions on the performance of Al–Si–Cu–Mg alloys, Ph.D. Thesis, Université du Québec à Chicoutimi, 2016

  11. N. Alexopoulos, Generation of quality maps to support material selection by exploiting the quality indices concept of cast aluminum alloys. Mater. Des. 28, 534–543 (2007)

    Article  CAS  Google Scholar 

  12. H. Ammar, A. Samuel, F. Samuel, E. Simielli, G. Sigworth, J. Lin, Influence of aging parameters on the tensile properties and quality index of Al-9 Pct Si-1.8 Pct Cu-0.5 Pct Mg 354-type casting alloys. Metall. Mater. Trans. A 43A, 61–73 (2012)

    Article  Google Scholar 

  13. M. Verbrugge, Mass decompounding and vehicle lightweighting. Mater. Sci. Forum 5, 618–619 (2009)

    Google Scholar 

  14. J. Campbell, T.W. Clyne, Hot tearing in Al–Cu alloys. Int. J. Cast Met. Res. 3, 224–226 (1990)

    Article  Google Scholar 

  15. S. Li, D. Apelian, Hot tearing of aluminum alloys. Int. J. Metalcast. 5, 23–40 (2011)

    Article  Google Scholar 

  16. I.O. Wallinder, X. Zhang, S. Goidanich, N.L. Boze, G. Herting, C. Leygraf, Corrosion and runoff rates of Cu and three Cu-alloys in marine environments with increasing chloride deposition rate. Sci. Total Environ. 472, 681–694 (2014)

    Article  Google Scholar 

  17. F.J. Tavitas-Medrano, S. Valtierra, J.E. Gruzleski, F.H. Samuel, H.W. Doty, A TEM study of the aging behavior of 319 type alloys, in Transactions of the American Foundry Society: 112th Metalcasting Congress, vol. 116, 17–20 May 2008, Atlanta, Georgia (2008), pp. 99–114

  18. F.J. Tavitas-Medrano, A.M.A. Mohamed, J.E. Gruzleski, F.H. Samuel, H.W. Doty, Precipitation-hardening in cast Al–Si–Cu–Mg alloys. J. Mater. Sci. 45, 641–651 (2010)

    Article  CAS  Google Scholar 

  19. S.C. Wang, M.J. Starink, Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int. Mater. Rev. 50, 193–215 (2005)

    Article  Google Scholar 

  20. D.J. Chakrabarti, D.E. Laughlin, Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Prog. Mater Sci. 49, 389–410 (2004)

    Article  CAS  Google Scholar 

  21. M. Drouzy, S. Jacob, M. Richard, Interpretation of tensile results by means of quality index and probable yield strength-application to Al–Si7 Mg foundry alloys-France. Int. Cast Met. J. 5, 43–50 (1980)

    CAS  Google Scholar 

  22. A. Dons, G. Heiberg, J. Voje, J. Maeland, J. Loland, A. Prestmo, On the effect of additions of cu and mg on the ductility of Al–Si foundry alloys cast with a cooling rate of approximately 3 K/s. Mater. Sci. Eng. A 413, 561–566 (2005)

    Article  Google Scholar 

  23. H.R. Ammar, C. Moreau, A.M. Samuel, F.H. Samuel, H.W. Doty, Influences of alloying elements, solution treatment time and quenching media on quality indices of 413-type Al–Si casting alloys. Mater. Sci. Eng. A 489, 426–438 (2008)

    Article  Google Scholar 

  24. P. Ratchev, B. Verlinden, P. De Smet, P. Van Houtte, Precipitation hardening of an Al–4.2 wt%Mg–0.6 wt%Cu alloy. Acta Mater. 46, 3523–3533 (1998)

    Article  CAS  Google Scholar 

  25. S. Wang, M. Starink, N. Gao, Precipitation hardening in Al–Cu–Mg alloys revisited. Scr. Mater. 54, 287–291 (2006)

    Article  CAS  Google Scholar 

  26. P. Ratchev, B. Verlinden, P. De Smet, P. Van Houtte, Effect of cooling rate and predeformation on the precipitation hardening of an Al–4.2 wt%Mg–0.6 wt%Cu alloy. Scr. Mater. 38, 1195–1201 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Amal Samuel for enhancing the quality of the images used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Samuel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girgis, A., Abdelaziz, M.H., Samuel, A.M. et al. On the Enhancement of the Microstructure and Tensile Properties of an Al–Cu Based Cast Alloy. Metallogr. Microstruct. Anal. 8, 757–769 (2019). https://doi.org/10.1007/s13632-019-00583-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-019-00583-8

Keywords

Navigation