Log in

Quenching and Partitioning of Ultrahigh Carbon (1.69 Mass% C) Steel

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Quenching and partitioning (Q&P) or quenching and tempering (Q&T) process of modified ultrahigh carbon steel (UHCS, Fe–1.69C–1.38Si–1.84Mn–2.20Cr–0.54Mo–0.43Ni wt%) was investigated by means of scanning electronic microscopy (SEM) equipped with energy-dispersive spectrometry (EDS) and x-ray diffraction (XRD). Mechanical properties, including hardness and impact toughness, and wear resistance were also measured. After Q&P, high impact toughness (10.5 J/cm2) and wear resistance at 100 N load in dry sliding were achieved on tested samples. We attributed the optimum mechanical properties and high wear resistance to better microstructure consisting of carbon-depleted martensite, uniformly distributed fine carbides, and high volume fraction of retained austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Wadsworth, D.R. Lesuer, Ancient and modern laminated composites: from the Great Pyramid of Gizeh to Y2K. Mater. Charact. 45, 289–313 (2000)

    Article  Google Scholar 

  2. J.D. Verhoeven, A.H. Pendray, W.E. Dauksch, The key role of impurities in ancient Damascus steel blades. JOM 50, 58–64 (1998)

    Article  Google Scholar 

  3. J.D. Verhoeven, A.H. Pendray, P.M. Berge, Studies of damascus steel blades: part II-destruction and reformation of the pattern. Mater. Charact. 30, 187–200 (1993)

    Article  Google Scholar 

  4. M.L. Young, J.D. Almer, M.R. Daymond, D.R. Haeffner, D.C. Dunand, Load partitioning between ferrite and cementite during elasto-plastic deformation of an ultrahigh carbon steel. Acta Mater. 55, 1999–2011 (2007)

    Article  Google Scholar 

  5. H.M. Howe, The Metallurgy of Steel (Scientific Publishing Company, New York, 1891)

    Google Scholar 

  6. O.D. Sherby, B. Walser, C.M. Young, E.M. Cady, Superplastic ultrahigh carbon steel. Scripta Metall. 9, 569–573 (1975)

    Article  Google Scholar 

  7. H. Sunada, J. Wadseorth, J. Lin, O.D. Sherby, Mechanical properties and microstructure of heat-treated ultrahigh carbon steels. Mater. Sci. Eng. 38, 35–40 (1979)

    Article  Google Scholar 

  8. T. Oyama, O.D. Sherby, J. Wadsworth, Application of the divorced eutectoid transformation to the development of fine-grained, spheroidized structures in ultrahigh carbon steels. Scripta Metall. 18, 799–804 (1984)

    Article  Google Scholar 

  9. D.R. Lesuer, C.K. Syn, A. Goldberg, J. Wadsworth, O.D. Sherby, The case for ultrahigh-carbon steel as structural materials. JOM 45, 40–46 (1993)

    Article  Google Scholar 

  10. C.K. Syn, D.R. Lesuer, O.D. Sherby, Influence of microstructure on tensile properties of spheroidized ultrahigh-carbon (1.8 pct carbon) steel. Metall. Trans. A 25, 1481–1493 (1994)

    Article  Google Scholar 

  11. D.N. Hanlon, W.M. Rainforth, C.M. Cellars, Rolling/sliding wear response of conventionally processed and spray formed high chromium content cast iron at ambient and elevated temperature. Wear 225–229, 587–599 (1999)

    Article  Google Scholar 

  12. L.E. Eiselstein, O.A. Ruano, O.D. Sherby, Structural characterization of rapidly solidified white cast iron powders. J. Mater. Sci. 18, 483–492 (1983)

    Article  Google Scholar 

  13. Q. Ma, B.C. Liu, Z.C. Wang, Breakup of eutectic carbide network of white cast irons at high temperatures. J. Mater. Sci. 30, 3383–3386 (1995)

    Article  Google Scholar 

  14. Q. Ma, C.C. Wang, H. Shoji, Modification of hypoeutectic low alloy white cast irons. J. Mater. Sci. 31, 1865–1871 (1996)

    Article  Google Scholar 

  15. K.P. Liu, X.L. Dun, J.P. Lai, H.S. Liu, Effects of modification on microstructure and properties of ultrahigh carbon (1.9 wt% C) steel. Mater. Sci. Eng. A 528, 8263–8268 (2011)

    Article  Google Scholar 

  16. J.G. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Carbon partitioning into austenite after martensite transformation. Acta Mater. 51, 2611–2622 (2003)

    Article  Google Scholar 

  17. A. Clark, Carbon partitioning into austenite from martensite in a silicon-containing high-strength sheet steel. Ph.D. Thesis. Golden, Co: Colorado School of Mines (2006)

  18. E. De Moor, J.G. Speer, D.K. Matlock, J.H. Kwak, S.B. Lee, Quenching and partitioning of CMnSi steels containing elevated manganese levels. Steel Res. Int. 83, 322–327 (2012)

    Article  Google Scholar 

  19. M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma, Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel. Acta Mater. 59, 6059–6068 (2011)

    Article  Google Scholar 

  20. M.J. Santofimia, L. Zhao, J. Sietsma, Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization. Metall. Mater. Trans. A 40, 46–57 (2009)

    Article  Google Scholar 

  21. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer, Quenching and partitioning martensite: a novel steel heat treatment. Mater. Sci. Eng. A 438–440, 25–34 (2006)

    Article  Google Scholar 

  22. Y. Toji, H. Matsuda, M. Herbig, P.-P. Choi, D. Raabe, Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy. Acta Mater. 65, 215–228 (2014)

    Article  Google Scholar 

  23. H.K.D.H. Bhadeshia, D.V. Edmonds, The Bainite transformation in a silicon steel. Metall. Trans. A 10A, 895–907 (1979)

    Article  Google Scholar 

  24. E.P. Bagliani, M.J. Santofimia, L. Zhao, J. Samajdar, E. Anelli, Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon ateel. Mater. Sci. Eng. A 559, 486–495 (2005)

    Article  Google Scholar 

  25. G.H. Gao, H. Zhang, X.L. Gui, P. Luo, Z.L. Tan, B.Z. Bai, Enhanced ducitility and toughness in an ultrahigh-strength Mn-Si-Cr-C steel: the great potential of ultrafine filmy retained austenite. Acta Mater. 76, 425–433 (2014)

    Article  Google Scholar 

  26. B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison-Wesley Publishing Co., Inc., Massachusetts, 1979)

    Google Scholar 

  27. Y. Zhang, Application of phase equilibrium thermodynamic method in alloy design for high carbon alloy steel with ultrahigh carbides, Ph.D. Thesis, Dalian Maritime University, China (2007)

  28. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock et al., Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process: a critical assessment. Acta Mater. 56, 16–22 (2008)

    Article  Google Scholar 

  29. M.J. Santofimia, L. Zhao, R. Petrov, J. Sietsma, Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel. Mater. Charact. 59, 1758–1764 (2008)

    Article  Google Scholar 

  30. Y. Takahama, M.J. Santofimia, M.G. Mecozzi, L. Zhao, J. Sietsma, Phase field simulation of the carbon redistribution during the quenching and partitioning process in a low-carbon steel. Acta Mater. 60, 2916–2926 (2012)

    Article  Google Scholar 

  31. S. Chatterjee, H.K.D.H. Bhadeshia, TRIP-assisted steels: cracking of high-carbon martensite. Mater. Sci. Technol. 22, 645–649 (2006)

    Article  Google Scholar 

  32. J. Shi, X.J. Sun, M.Q. Wang, W.J. Hui, H. Dong, W.Q. Cao, Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable. Scripta Mater. 63, 815–818 (2010)

    Article  Google Scholar 

  33. K. Sugimoto, N. Usui, M. Kobayashi, S. Hashimoto, Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels. ISIJ Int. 32, 1311–1318 (1992)

    Article  Google Scholar 

  34. M.G. Lee, S.J. Kim, H.N. Han, Crystal plasticity finite element modeling of mechanically induced martensitic transformation (MIMT) in metastable austenite. Int. J. Plast. 26, 688–710 (2010)

    Article  Google Scholar 

  35. A. Bedolla-Jacuinde, S.L. Aguilar, C. Maldonado, Eutectic modification in a low-chromium white cast iron by a mixture of titanium, rare earths, and bismuth: part II-effect on the wear behavior. J. Mater. Eng. Perform. 14, 301–306 (2005)

    Article  Google Scholar 

  36. C.P. Tabrett, I.R. Sare, M.R. Ghomashchi, Microstructure-property relationships in high chromium white iron alloys. Int. Mater. Rev. 41, 59–82 (1996)

    Article  Google Scholar 

  37. F. Bergman, P. Hedenqvist, S. Hogmaik, The influence of primary carbides and test parameters on abrasive and erosive wear of selected PM high speed steels. Tribol. Int. 30, 183–191 (1997)

    Article  Google Scholar 

  38. Y.P. Wang, D.Y. Li, L. Parent, H. Tian, Improving the wear resistance of white cast iron using a new concept-high-entropy microstructure. Wear 271, 1623–1628 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank associate Professor G.M. Cai, School of Materials Science and Engineering, Central South University, Changsha, Hunan, P.R. China, for her helpful discussions about calculation of volume fraction from XRD pattern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y.H., Liu, H.S., **, Z.P. et al. Quenching and Partitioning of Ultrahigh Carbon (1.69 Mass% C) Steel. Metallogr. Microstruct. Anal. 5, 124–134 (2016). https://doi.org/10.1007/s13632-016-0270-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-016-0270-4

Keywords

Navigation