Log in

De novo transcriptome assembly for the basal angiosperm Illicium anisatum provides insights into the biosynthesis of shikimate and neurotoxin anisatin

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Illicium anisatum, an ancient angiosperm belonging to the ANITA grade, contains abundant plant metabolites with antimicrobial activity, including shikimate and sesquiterpene lactones (STLs) such as anisatin. The aim of this study was to generate a full-length transcriptome resource for identifying genes related to the shikimate and STL biosynthetic pathways in I. anisatum and for studying the evolution of Illicium species. We performed RNA isoform sequencing of I. anisatum leaf, stem, flower, and floral bud samples and annotated the assembled transcripts based on a homology search. A total of 148,593 transcripts with an average length of 2.2 kb and high assembly completeness were generated. Functional pathway analysis revealed the evolutionary conservation of the shikimate and aromatic amino acid (AAA) biosynthetic pathways in I. anisatum and the upregulation of genes that encode chorismite synthase, which is highly associated with the production of shikimate and serve as a precursor for the biosynthesis of AAAs, in floral organs. I. anisatum germacrene A oxidase (IaGAO) and germacrene D synthase (IaGDS), which participate in STL biosynthesis, showed evolutionary divergence from their homologs in the plants of the family Asteraceae, and their genes were mainly expressed in flower organs. Interestingly, alternative splicing isoforms of IaGDS transcripts were found, probably resulting in differential expression in flower and floral bud. We also constructed a map of the I. anisatum chloroplast genome. Isoform sequencing provided a high level of transcriptome assembly completeness and gene annotation and enabled effective prediction of protein domains. The reported long-read sequencing-based de novo assembly of the I. anisatum transcriptome should aid in exploring genes related to the shikimate and STL biosynthesis pathways and associated molecular mechanisms in Illicium species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Sequencing data generated during the current study are available in the National Agricultural Biotechnology Center (NABIC) and the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database under the following accession numbers: SRX11660706–SRX11660709 (PacBio Iso-Seq data), SRX11660710–SRX11660713 (Illumina RNA-Seq data), and SRX11660714 (Illumina WGS data). The data on unigene, coding, and protein sequences are available from our website http://ianisatum.transcriptome.theragenbio.com/IaU_1.0.

References

  • Ahn SY, Kim SA, Yun HK (2019) Differentially expressed genes during berry ripening in de novo RNA assembly of Vitis flexuosa fruits. Hortic Environ Biotechnol 60:531–553

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Amorim MH, da Costa RM, Lopes C, Bastos MM (2013) Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol 43:559–579

    Article  CAS  PubMed  Google Scholar 

  • Assefa AT, V0andesompele J, Thas O (2020) Correction to: On the utility of RNA sample pooling to optimize cost and statistical power in RNA sequencing experiments. BMC Genomics 21:384

    Article  PubMed  PubMed Central  Google Scholar 

  • Avula B, Wang YH, Smillie TJ, Khan IA (2009) Determination of shikimic acid in fruits of Illicium species and various other plant samples by LC–UV and LC–ESI–MS. Chroma 69:307–314

    Article  CAS  Google Scholar 

  • Barbehenn RV, Peter Constabel C (2011) Tannins in plant-herbivore interactions. Phytochemistry 72:1551–1565

    Article  CAS  PubMed  Google Scholar 

  • Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126:37–47

    Article  CAS  PubMed  Google Scholar 

  • Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527

    Article  CAS  PubMed  Google Scholar 

  • Chadwick M, Trewin H, Gawthrop F, Wagstaff C (2013) Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 14:12780–12805

    Article  PubMed  PubMed Central  Google Scholar 

  • Condakes ML, Novaes LFT, Maimone TJ (2018) Contemporary synthetic strategies toward seco-prezizaane sesquiterpenes from Illicium species. J Org Chem 83:14843–14852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuyama Y, Huang J (2005) Chemistry and neurotrophic activity of seco-prezizaane- and anislactone-type sesquiterpenes from Illicium species. Stud Nat Prod Chem 32(Part L):395–427

    Article  CAS  Google Scholar 

  • Ghosh S, Chisti Y, Banerjee UC (2012) Production of shikimic acid. Biotechnol Adv 30:1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M et al (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  • Hong CP, Piao ZY, Kang TW, Batley J, Yang TJ, Hur YK, Bhak J, Park BS, Edwards D, Lim YP (2007) Genomic distribution of simple sequence repeats in Brassica rapa. Mol Cells 23:349–356

    CAS  PubMed  Google Scholar 

  • Hong CP, Park J, Lee Y, Lee M, Park SG, Uhm Y, Lee J, Kim CK (2017) accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae. BMC Genomics 18:607

    Article  PubMed  PubMed Central  Google Scholar 

  • Howe EA, Sinha R, Schlauch D, Quackenbush J (2011) RNA-Seq analysis in MeV. Bioinformatics 27:3209–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda T, Ozoe Y, Okuyama E, Nagata K, Honda H, Shono T, Narahashi T (1999) Anisatin modulation of the gamma-aminobutyric acid receptor-channel in rat dorsal root ganglion neurons. Br J Pharmacol 127:1567–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong H, Lim JM, Park J, Sim YM, Choi HG, Lee J, Jeong WJ (2014) Plastid and mitochondrion genomic sequences from Arctic Chlorella sp. ArM0029B. BMC Genomics 15:286

    Article  PubMed  PubMed Central  Google Scholar 

  • Jo IH, Lee J, Hong CE, Lee DJ, Bae W, Park SG, Ahn YJ, Kim YC, Kim JU, Lee JW et al (2017) Isoform sequencing provides a more comprehensive view of the Panax ginseng transcriptome. Genes (Basel) 8:228

    Article  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klayman DL (1985) Qinghaosu (artemisinin): an antimalarial drug from China. Science 228:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakhanpal S, Fan JS, Luan S, Swaminathan K (2021) Structural and functional analyses of the PPIase domain of Arabidopsis thaliana CYP71 reveal its catalytic activity toward histone H3. FEBS Lett 595:145–154

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson MJ, Zhang L (2006) Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biol 7:R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee M, Park J, Lee H, Sohn SH, Lee J (2015) Complete chloroplast genomic sequence of Citrus platymamma determined by combined analysis of Sanger and NGS data. Hortic Environ Biotechnol 56:704–711

    Article  CAS  Google Scholar 

  • Lee JH, Kim SA, Ahn SY, Yun HK (2019) Differential expression of genes in response to temperature conditions selected by transcriptome analysis of grapevine leaves. Hortic Sci Technol 37:437–447

    CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JH, Dudareva N (2020) Aromatic amino acids: a complex network ripe for future exploration. Trends Plant Sci 25:670-681. https://doi.org/10.1016/j.tplants.2020.02.005

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzgar D, Bytof J, Wills C (2000) Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res 10:72–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morris AB, Bell CD, Clayton JW, Judd WS, Soltis DE, Soltis PS (2007) Phylogeny and divergence time estimation in Illicium with implications for new world biogeography. Syst Bot 32:236–249

    Article  Google Scholar 

  • Mortimer JC, Batley J, Love CG, Logan E, Edwards D (2005) Simple sequence repeat (SSR) and GC distribution in the Arabidopsis thaliana genome. J Plant Biotechnol 7:17–25

    Google Scholar 

  • Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135:756–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen DT, Gopfert JC, Ikezawa N, Macnevin G, Kathiresan M, Conrad J, Spring O, Ro DK (2010) Biochemical conservation and evolution of germacrene A oxidase in asteraceae. J Biol Chem 285:16588–16598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TD, Faraldos JA, Vardakou M, Salmon M, O’Maille PE, Ro DK (2016) Discovery of germacrene a synthases in Barnadesia spinosa: the first committed step in sesquiterpene lactone biosynthesis in the basal member of the Asteraceae. Biochem Biophys Res Commun 479:622–627

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TD, Kwon M, Kim SU, Fischer C, Ro DK (2019) Catalytic plasticity of germacrene A oxidase underlies sesquiterpene lactone diversification. Plant Physiol 181:945-960. https://doi.org/10.1104/pp.19.00629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754

    Article  CAS  PubMed  Google Scholar 

  • Niwa H, Nisiwaki M, Tsukada I, Ishigaki T, Ito S, Wakamatsu K, Mori T, Ikagawa M, Yamada K (1990) Stereocontrolled total synthesis of (-)-anisatin: a neurotoxic sesquiterpenoid possessing a novel spiro β-lactone. J Am Chem Soc 112:9001–9003

    Article  CAS  Google Scholar 

  • Padilla-Gonzalez GF, dos Santos FA, Da Costa FB (2016) Sesquiterpene lactones: More than protective plant compounds with high toxicity. Crit Rev Plant Sci 35:18–37

    Article  CAS  Google Scholar 

  • Prosser I, Altug IG, Phillips AL, Konig WA, Bouwmeester HJ, Beale MH (2004) Enantiospecific (+)- and (-)-germacrene D synthases, cloned from goldenrod, reveal a functionally active variant of the universal isoprenoid-biosynthesis aspartate-rich motif. Arch Biochem Biophys 432:136–144

    Article  CAS  PubMed  Google Scholar 

  • Qiu YL, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407

    Article  CAS  PubMed  Google Scholar 

  • Ranney TG, Ryan CF, Deans LE, Lynch NP (2018) Cytogenetics and genome size evolution in Illicium L. HortScience 53:620–623

    Article  CAS  Google Scholar 

  • Robinson SL, Christenson JK, Wackett LP (2019) Biosynthesis and chemical diversity of β-lactone natural products. Nat Prod Rep 36:458–475

    Article  CAS  PubMed  Google Scholar 

  • Romanov MS, Bobrov AVFC, Endress PK (2013) Structure of the unusual explosive fruits of the early diverging angiosperm Illicium (Schisandraceae s.l., Austrobaileyales). Bot J Linn Soc 171:640–654

    Article  Google Scholar 

  • Seppey M, Manni M, Zdobnov EM (2019) BUSCO: Assessing genome assembly and annotation completeness. Meth Mol Biol 1962:227–245

    Article  CAS  Google Scholar 

  • Soltis PS, Brockington SF, Yoo MJ, Piedrahita A, Latvis M, Moore MJ, Chanderbali AS, Soltis DE (2009) Floral variation and floral genetics in basal angiosperms. Am J Bot 96:110–128

    Article  PubMed  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Testone G, Mele G, di Giacomo E, Tenore GC, Gonnella M, Nicolodi C, Frugis G, Iannelli MA, Arnesi G, Schiappa A et al (2019) Transcriptome driven characterization of curly- and smooth-leafed endives reveals molecular differences in the sesquiterpenoid pathway. Hortic Res 6:1. https://doi.org/10.1038/s41438-018-0066-6

  • The Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20

    Article  Google Scholar 

  • Tzin V, Galili G (2010) New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant 3:956–972

    Article  CAS  PubMed  Google Scholar 

  • Urakami K, Zangiacomi V, Yamaguchi K, Kusuhara M (2010) Quantitative metabolome profiling of Illicium anisatum by capillary electrophoresis time-of-flight mass spectrometry. Biomed Res 31:161-163. https://doi.org/10.2220/biomedres.31.161

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao Y, Lu Z, Olson A, Stein JC, Ware D (2016) Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat Commun 7:11708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, Hamp T, Honigschmid P, Schafferhans A, Roos M, Bernhofer M et al (2014) PredictProtein–an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 42:W337–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J, Zhang Y, Cui H, Liu J, Wu Y, Cheng Y, Xu H, Huang X, Li S, Zhou A et al (2018) WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res 46:W71–W75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama R, de Oliveira MVV, Kleven B, Maeda HA (2021) The entry reaction of the plant shikimate pathway is subjected to highly complex metabolite-mediated regulation. Plant Cell 33:671–696

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yuan D, Yu S, Li Z, Cao Y, Miao Z, Qian H, Tang K (2004) Preference of simple sequence repeats in coding and non-coding regions of Arabidopsis thaliana. Bioinformatics 20:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan–an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Program for Agricultural Science & Technology Development (Project No. PJ01427601) and the Cooperative Research Program for National Agricultural Genome Program (Project No. PJ01349002), Rural Development Administration (RDA), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

CPH, JL, and DJL conceived this study. JL, JHP, and ML prepared the samples and extracted genomic DNA and total RNA. EN performed WGS and RNA-Seq. CPH, DJL, JHK BC, SY, SK, SJC, ML, JL, and YL performed bioinformatics analyses. CPH, JL, and DJL wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Jungho Lee or Chang Pyo Hong.

Ethics declarations

Conflict of interest

CPH, EN, SY, SK, BC, and SJC are employees of Theragen Bio Co., Ltd. The other authors declare that they have no conflict of interest.

Additional information

Communicated by Inhwa Yeam.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, DJ., Choi, B., Noh, E. et al. De novo transcriptome assembly for the basal angiosperm Illicium anisatum provides insights into the biosynthesis of shikimate and neurotoxin anisatin. Hortic. Environ. Biotechnol. 64, 449–460 (2023). https://doi.org/10.1007/s13580-022-00483-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-022-00483-x

Keywords

Navigation