Log in

The mechanism of the contribution of ICAM-1 to epithelial–mesenchymal transition (EMT) in bladder cancer

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Bladder cancer is one of the most prevalent cancers worldwide. Moreover, if not optimally treated, bladder cancer is a significant burden on healthcare systems due to multiple recurrences which often require more aggressive therapies. Therefore, targeted anti-cancer therapies, developed based on an in-depth understanding of specific proteins and molecular mechanisms, are promising in cancer treatment. Here, for the first time, we presented the new approaches indicating that intracellular adhesion molecule-1 (ICAM-1) may play a potential role in enhancing therapeutic effectiveness for bladder cancer. In the present study, we presented that ICAM-1 expression as well as its regulation in bladder cancer is strongly correlated with the high expression of N-cadherin. Importantly, the presence of N-cadherin and its regulator—TWIST-1 was abolished when ICAM-1 was silenced. We identified also that ICAM-1 is capable of regulating cellular migration, proliferation, and EMT progression in bladder cancer cells via the N-cadherin/SRC/AKT/GSK-3β/β-catenin signaling axis. Therefore, we propose ICAM-1 as a novel metastatic marker for EMT progression, which may also be used as a therapeutic target in bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5 
Fig. 6 
Fig. 7 
Fig. 8 
Fig. 9 

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, Malmström PU, Choi W, Guo CC, Lotan Y, Kassouf W. Bladder cancer. Lancet. 2016;3(388):2796–810. https://doi.org/10.1016/S0140-6736(16)30512-8.

    Article  Google Scholar 

  2. Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol. 2018;13(9):1300. https://doi.org/10.3389/fphar.2018.01300.

    Article  CAS  Google Scholar 

  3. Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacol Rep. 2009;61:22–32. https://doi.org/10.1016/s1734-1140(09)70004-0.

    Article  CAS  PubMed  Google Scholar 

  4. Mruk DD, **ao X, Lydka M, Li MW, Bilinska B, Cheng CY. Intercellular adhesion molecule 1: recent findings and new concepts involved in mammalian spermatogenesis. Semin Cell Dev Biol. 2014;29:43–54. https://doi.org/10.1016/j.semcdb.2013.07.003.

    Article  CAS  PubMed  Google Scholar 

  5. Guo P, Huang J, Wang L, Jia D, Yang J, Dillon DA, Zurakowski D, Mao H, Moses MA, Auguste DT. ICAM-1 as a molecular target for triple negative breast cancer. Proc Natl Acad Sci USA. 2014;14(111):14710–5. https://doi.org/10.1073/pnas.1408556111.

    Article  CAS  Google Scholar 

  6. Usami Y, Ishida K, Sato S, Kishino M, Kiryu M, Ogawa Y, Okura M, Fukuda Y, Toyosawa S. Intercellular adhesion molecule-1 (ICAM-1) expression correlates with oral cancer progression and induces macrophage/cancer cell adhesion. Int J Cancer. 2013;1(133):568–78. https://doi.org/10.1002/ijc.28066.

    Article  CAS  Google Scholar 

  7. Rosette C, Roth RB, Oeth P, Braun A, Kammerer S, Ekblom J, Denissenko MF. Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis. 2005;26:943–50. https://doi.org/10.1093/carcin/bgi070.

    Article  CAS  PubMed  Google Scholar 

  8. Tsai ST, Wang PJ, Liou NJ, Lin PS, Chen CH, Chang WC. ICAM1 Is a potential cancer stem cell marker of esophageal squamous cell carcinoma. PLoS ONE. 2015;16(10): e0142834. https://doi.org/10.1371/journal.pone.0142834.

    Article  CAS  Google Scholar 

  9. Lim EJ, Kang JH, Kim YJ, Kim S, Lee SJ. ICAM-1 promotes cancer progression by regulating SRC activity as an adapter protein in colorectal cancer. Cell Death Dis. 2022;29(13):417. https://doi.org/10.1038/s41419-022-04862-1.

    Article  CAS  Google Scholar 

  10. Gil D, Ciołczyk-Wierzbicka D, Dulińska-Litewka J, Laidler P. Integrin-linked kinase regulates cadherin switch in bladder cancer. Tumour Biol. 2016;37:15185–91. https://doi.org/10.1007/s13277-016-5354-x.

    Article  CAS  PubMed  Google Scholar 

  11. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42. https://doi.org/10.1038/nrm1835.

    Article  CAS  PubMed  Google Scholar 

  12. Grünert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol. 2003;4:657–65. https://doi.org/10.1038/nrm1175.

    Article  CAS  PubMed  Google Scholar 

  13. Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci. 2008;15(121):727–35. https://doi.org/10.1242/jcs.000455.

    Article  CAS  Google Scholar 

  14. Yang Z, Zhang X, Gang H, Li X, Li Z, Wang T, Han J, Luo T, Wen F, Wu X. Up-regulation of gastric cancer cell invasion by twist is accompanied by n-cadherin and fibronectin expression. Biochem Biophys Res Commun. 2007;6(358):925–30. https://doi.org/10.1016/j.bbrc.2007.05.023.

    Article  CAS  Google Scholar 

  15. Gil D, Ciołczyk-Wierzbicka D, Dulińska-Litewka J, Zwawa K, McCubrey JA, Laidler P. The mechanism of contribution of integrin linked kinase (ILK) to epithelial-mesenchymal transition (EMT). Adv Enzyme Regul. 2011;51:195–207. https://doi.org/10.1016/j.advenzreg.2010.09.005.

    Article  CAS  PubMed  Google Scholar 

  16. Howard S, Deroo T, Fujita Y, Itasaki N. A positive role of cadherin in Wnt/β-catenin signalling during epithelial-mesenchymal transition. PLoS ONE. 2011;6: e23899. https://doi.org/10.1371/journal.pone.0023899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Najdi R, Holcombe RF, Waterman ML. Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog. 2011;17(10):5. https://doi.org/10.4103/1477-3163.78111.

    Article  CAS  Google Scholar 

  18. Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, Goss KH. Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol. 2010;176:2911–20. https://doi.org/10.2353/ajpath.2010.091125.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maeda K, Kang SM, Sawada T, Nishiguchi Y, Yashiro M, Ogawa Y, Ohira M, Ishikawa T, Hirakawa-YS CK. Expression of intercellular adhesion molecule-1 and prognosis in colorectal cancer. Oncol Rep. 2002;9:511–4.

    CAS  PubMed  Google Scholar 

  20. Gai JQ, Sheng X, Qin JM, Sun K, Zhao W, Ni L. The effect and mechanism of bufalin on regulating hepatocellular carcinoma cell invasion and metastasis via Wnt/β-catenin signaling pathway. Int J Oncol. 2016;48:338–48. https://doi.org/10.3892/ijo.2015.3250.

    Article  CAS  PubMed  Google Scholar 

  21. McCubrey JA, Davis NM, Abrams SL, Montalto G, Cervello M, Basecke J, Libra M, Nicoletti F, Cocco L, Martelli AM, Steelman LS. Diverse roles of GSK-3: tumor promoter-tumor suppressor, target in cancer therapy. Adv Biol Regul. 2014;54:176–96. https://doi.org/10.1016/j.jbior.2013.09.013.

    Article  CAS  PubMed  Google Scholar 

  22. Meares GP, Jope RS. Resolution of the nuclear localization mechanism of glycogen synthase kinase-3: functional effects in apoptosis. J Biol Chem. 2007;8(282):16989–7001. https://doi.org/10.1074/jbc.M700610200.

    Article  Google Scholar 

  23. Wu C, Dedhar S. Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol. 2001. https://doi.org/10.1083/jcb.200108077.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goc A, Al-Husein B, Katsanevas K, Steinbach A, Lou U, Sabbineni H, DeRemer DL, Somanath PR. Targeting Src-mediated Tyr216 phosphorylation and activation of GSK-3 in prostate cancer cells inhibit prostate cancer progression in vitro and in vivo. Oncotarget. 2014;15(5):775–87. https://doi.org/10.18632/oncotarget.1770.

    Article  Google Scholar 

  25. Bernardo C, Costa C, Palmeira C, Pinto-Leite R, Oliveira P, Freitas R, Amado F, Santos LL. What we have learned fromurinary bladder cancer models. J Cancer Metastasis Treat. 2016;2:51–8. https://doi.org/10.4103/2394-4722.171279.

    Article  CAS  Google Scholar 

  26. Mruk DD, Cheng CY. Enhanced chemiluminescence (ECL) for routine immunoblotting: An inexpensive alternative to commercially available kits. Spermatogenesis. 2011;1:121–2. https://doi.org/10.4161/spmg.1.2.16606.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ciołczyk-Wierzbicka D, Gil D, Laidler P. The inhibition of cell proliferation using silencing of N-cadherin gene by siRNA process in human melanoma cell lines. Curr Med Chem. 2012;19:145–51. https://doi.org/10.2174/092986712803414006.

    Article  PubMed  Google Scholar 

  28. Bui TM, Wiesolek HL, Sumagin R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 2020;108:787–99. https://doi.org/10.1002/JLB.2MR0220-549R.

    Article  CAS  PubMed  Google Scholar 

  29. Lekka M, Gil D, Dąbroś W, Jaczewska J, Kulik AJ, Lekki J, Stachura Z, Stachura J, Laidler P. Characterization of N-cadherin unbinding properties in non-malignant (HCV29) and malignant (T24) bladder cells. J Mol Recognit. 2011;24:833–42. https://doi.org/10.1002/jmr.1123.

    Article  PubMed  Google Scholar 

  30. Gil D, Zarzycka M, Dulińska-Litewka J, Ciołczyk-Wierzbicka D, Lekka M, Laidler P. Dihydrotestosterone increases the risk of bladder cancer in men. Hum Cell. 2019;32:379–89. https://doi.org/10.1007/s13577-019-00255-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee SH, Wang X, Kim SH, Kim Y, Rodriguez-Puebla ML. Cyclin D3 deficiency inhibits skin tumor development, but does not affect normal keratinocyte proliferation. Oncol Lett. 2017;14:2723–34. https://doi.org/10.3892/ol.2017.6551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boonen GJ, van Oirschot BA, van Diepen A, Mackus WJ, Verdonck LF, Rijksen G, Medema RH. Cyclin D3 regulates proliferation and apoptosis of leukemic T cell lines. J Biol Chem. 1999;274:34676–82. https://doi.org/10.1074/jbc.274.49.34676.

    Article  CAS  PubMed  Google Scholar 

  33. Hui L, Zhang S, Dong X, Tian D, Cui Z, Qiu X. Prognostic significance of twist and N-cadherin expression in NSCLC. PLoS ONE. 2013;3(8): e62171. https://doi.org/10.1371/journal.pone.0062171.

    Article  CAS  Google Scholar 

  34. Fang D, Hawke D, Zheng Y, **a Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem. 2007;13(282):11221–9. https://doi.org/10.1074/jbc.M611871200.

    Article  CAS  Google Scholar 

  35. Miyabayashi T, Teo JL, Yamamoto M, McMillan M, Nguyen C, Kahn M. Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci U S A. 2007;27(104):5668–73. https://doi.org/10.1073/pnas.0701331104.

    Article  CAS  Google Scholar 

  36. Luo J. Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett. 2009;18(273):194–200. https://doi.org/10.1016/j.canlet.2008.05.045.

    Article  CAS  Google Scholar 

  37. Ougolkov AV, Fernandez-Zapico ME, Bilim VN, Smyrk TC, Chari ST, Billadeau DD. Aberrant nuclear accumulation of glycogen synthase kinase-3beta in human pancreatic cancer: association with kinase activity and tumor dedifferentiation. Clin Cancer Res. 2006;1(12):5074–81. https://doi.org/10.1158/1078-0432.CCR-06-0196.

    Article  Google Scholar 

  38. Wang Z, Liu F, Huang C, Zhang J, Wu J. Bufalin inhibits epithelial-mesenchymal transition and increases radiosensitivity of non-small cell lung cancer via inhibition of the Src signaling. J Thorac Dis. 2023;31(15):123–34. https://doi.org/10.21037/jtd-22-1859.

    Article  Google Scholar 

  39. Liu X, Feng R. Inhibition of epithelial to mesenchymal transition in metastatic breast carcinoma cells by c-Src suppression. Acta Biochim Biophys Sin (Shanghai). 2010;42:496–501. https://doi.org/10.1093/abbs/gmq043.

    Article  CAS  PubMed  Google Scholar 

  40. Pinto-Leite R, Carreira I, Melo J, Ferreira SI, Ribeiro I, Ferreira J, Filipe M, Bernardo C, Arantes-Rodrigues R, Oliveira P, Santos L. Genomic characterization of three urinary bladder cancer cell lines: understanding genomic types of urinary bladder cancer. Tumour Biol. 2014;35:4599–617.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Centre (NCN, Poland, grant no. 2020/04/X/NZ5/00724) and by a grant from Science & Higher Education (MNiSW) through the Jagiellonian University Medical College N41/DBS/000943. The purchase of a microplate reader (BioKom Synergy, HTX) has been supported by a grant from the Priority Research Area qLIFE under the Strategic Programme Excellence Initiative at Jagiellonian University in Kraków. Poland.

Funding

This work was supported by the National Science Centre (NCN, Poland, grant no. 2020/04/X/NZ5/00724) and by a grant from Science & Higher Education (MNiSW) through the Jagiellonian University Medical College N41/DBS/000943. The purchase of a microplate reader (BioKom Synergy, HTX) has been supported by a grant from the Priority Research Area qLIFE under the Strategic Programme Excellence Initiative at Jagiellonian University in Kraków. Poland.

Author information

Authors and Affiliations

Authors

Contributions

M.Z. conceived the original idea, designed the study, performed the experiments, performed the figures and graphical abstract, performed statistical analysis of data, and wrote the manuscript; M.K-B. reviewed and edited the manuscript; D.G. performed proliferation analysis, helped with siRNA transfection, and reviewed and edited the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Marta Zarzycka.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 246 KB)

Supplementary file2 (TIF 3601 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarzycka, M., Kotula-Balak, M. & Gil, D. The mechanism of the contribution of ICAM-1 to epithelial–mesenchymal transition (EMT) in bladder cancer. Human Cell 37, 801–816 (2024). https://doi.org/10.1007/s13577-024-01053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-024-01053-2

Keywords

Navigation