Log in

Vasculature cells control neuroglial co-localization and synaptic connection in a central nervous system tissue mimic system

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Despite the development of neural tissue differentiation methods using a wide variety of stem cells and compartments, there is no standardized strategy for establishing synapses. As the neuronal network is developed in parallel with blood vessel angiogenesis in the central nervous system (CNS) from the embryonic period, we examined neuron–astrocyte–vasculature interactions to understand the effect of the vasculature on the development and stabilization of neurological morphogenesis. We generated a cellular co-culture module targeting the CNS that was embedded in a collagen-based extracellular matrix (ECM) gel. Our neuron–astrocyte–vascular complex module identified the neurological co-localization effect by endothelial cells, as well as the pericyte-induced improvement of synaptic connections. Furthermore, it was suggested that the PDGF, BDNF, IGF, and WNT/BMP pathways were upregulated in synaptic connections enhanced conditions, which are composed of neurexin. These results suggest that the integrity of the vasculature cells in the CNS is important for the establishment of neuronal networks and for synapse connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hilton BJ, Moulson AJ, Tetzlaff W. Neuroprotection and secondary damage following spinal cord injury: concepts and methods. Neurosci Lett. 2017;23(652):3–10. https://doi.org/10.1016/j.neulet.2016.12.004.

    Article  CAS  Google Scholar 

  2. Courtine G, Sofroniew MV. Spinal cord repair: advances in biology and technology. Nat Med. 2019;25(6):898–908. https://doi.org/10.1038/s41591-019-0475-6.

    Article  CAS  PubMed  Google Scholar 

  3. Juhasova J, Juhas S, Hruska-Plochan M, et al. Time course of spinal doublecortin expression in develo** rat and porcine spinal cord: implication in in vivo neural precursor grafting studies. Cell Mol Neurobiol. 2015;35(1):57–70. https://doi.org/10.1007/s10571-014-0145-7.

    Article  CAS  PubMed  Google Scholar 

  4. Tai W, Wu W, Wang LL, et al. In vivo reprogramming of NG2 glia enables adult neurogenesis and functional recovery following spinal cord injury. Cell Stem Cell. 2021;28(5):923-937.e4. https://doi.org/10.1016/j.stem.2021.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sawada M, Matsumoto M, Sawamoto K. Vascular regulation of adult neurogenesis under physiological and pathological conditions. Front Neurosci. 2014;17(8):53. https://doi.org/10.3389/fnins.2014.00053.

    Article  Google Scholar 

  6. Shin M, Nagai H, Sheng G. Notch mediates Wnt and BMP signals in the early separation of smooth muscle progenitors and blood/endothelial common progenitors. Development. 2009;136(4):595–603. https://doi.org/10.1242/dev.026906.

    Article  CAS  PubMed  Google Scholar 

  7. Anderson MA, Burda JE, Ren Y, et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016;532(7598):195–200. https://doi.org/10.1038/nature17623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abdelhak A, Foschi M, Abu-Rumeileh S, et al. Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol. 2022;18(3):158–72. https://doi.org/10.1038/s41582-021-00616-3.

    Article  CAS  PubMed  Google Scholar 

  9. Oudega M. Molecular and cellular mechanisms underlying the role of blood vessels in spinal cord injury and repair. Cell Tissue Res. 2012;349(1):269–88. https://doi.org/10.1007/s00441-012-1440-6.

    Article  CAS  PubMed  Google Scholar 

  10. Dias DO, Kalkitsas J, Kelahmetoglu Y, et al. Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions. Nat Commun. 2021;12(1):5501. https://doi.org/10.1038/s41467-021-25585-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Belayev L, Hong SH, Menghani H, et al. Docosanoids promote neurogenesis and angiogenesis, blood-brain barrier integrity, penumbra protection, and neurobehavioral recovery after experimental ischemic stroke. Mol Neurobiol. 2018;55(8):7090–106. https://doi.org/10.1007/s12035-018-1136-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mostafa S, Pakvasa M, Coalson E, et al. The wonders of BMP9: From mesenchymal stem cell differentiation, angiogenesis, neurogenesis, tumorigenesis, and metabolism to regenerative medicine. Genes Dis. 2019;6(3):201–23. https://doi.org/10.1016/j.gendis.2019.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hatakeyama M, Ninomiya I, Kanazawa M. Angiogenesis and neuronal remodeling after ischemic stroke. Neural Regen Res. 2020;15(1):16–9. https://doi.org/10.4103/1673-5374.264442.

    Article  CAS  PubMed  Google Scholar 

  14. Hook L, Vives J, Fulton N, et al. Non-immortalized human neural stem (NS) cells as a scalable platform for cellular assays. Neurochem Int. 2011;59(3):432–44. https://doi.org/10.1016/j.neuint.2011.06.024.

    Article  CAS  PubMed  Google Scholar 

  15. McLaren D, Gorba T, de Rotrou AM, et al. Automated large-scale culture and medium-throughput chemical screen for modulators of proliferation and viability of human induced pluripotent stem cell-derived neuroepithelial-like stem cells. J Biomol Screen. 2013;18(3):258–68. https://doi.org/10.1177/1087057112461446.

    Article  CAS  PubMed  Google Scholar 

  16. Conti L, Pollard SM, Gorba T, et al. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 2005;3(9):e283. https://doi.org/10.1371/journal.pbio.0030283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li S, Zheng J, Chai L, et al. Rapid and efficient differentiation of rodent neural stem cells into oligodendrocyte progenitor cells. Dev Neurosci. 2019;41(1–2):79–93. https://doi.org/10.1159/000499364.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Lu XY, Casella G, et al. Generation of oligodendrocyte progenitor cells from mouse bone marrow cells. Front Cell Neurosci. 2019;5(13):247. https://doi.org/10.3389/fncel.2019.00247.

    Article  CAS  Google Scholar 

  19. Vagaska B, Gillham O, Ferretti P. Modelling human CNS injury with human neural stem cells in 2- and 3-dimensional cultures. Sci Rep. 2020;10(1):6785. https://doi.org/10.1038/s41598-020-62906-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Funa K, Sasahara M. The roles of PDGF in development and during neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol. 2014;9(2):168–81. https://doi.org/10.1007/s11481-013-9479-z.

    Article  PubMed  Google Scholar 

  21. Ma R, **e Q, Li H, et al. l-borneol exerted the neuroprotective effect by promoting angiogenesis coupled with neurogenesis via Ang1-VEGF-BDNF pathway. Front Pharmacol. 2021;12:641894. https://doi.org/10.3389/fphar.2021.641894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu Y, Yang S, Zheng Z, et al. MiR-191–5p disturbed the angiogenesis in a mice model of cerebral infarction by targeting inhibition of BDNF. Neurol India. 2021;69(6):1601–7. https://doi.org/10.4103/0028-3886.333459.

    Article  PubMed  Google Scholar 

  23. Han W, Jiang L, Song X, Li T, Chen H, Cheng L. VEGF modulates neurogenesis and microvascular remodeling in epileptogenesis after status epilepticus in immature rats. Front Neurol. 2021;12:808568. https://doi.org/10.3389/fneur.2021.808568.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nieto-Estévez V, Defterali Ç, Vicario-Abejón C. IGF-I: a key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain. Front Neurosci. 2016;23(10):52. https://doi.org/10.3389/fnins.2016.00052.

    Article  Google Scholar 

  25. Dinsmore CJ, Soriano P. MAPK and PI3K signaling: at the crossroads of neural crest development. Dev Biol. 2018;444(Suppl 1):S79–97. https://doi.org/10.1016/j.ydbio.2018.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. 2011;2(4):51. https://doi.org/10.3389/fnmol.2011.00051.

    Article  CAS  Google Scholar 

  27. Polevoy H, Gutkovich YE, Michaelov A, Volovik Y, Elkouby YM, Frank D. New roles for Wnt and BMP signaling in neural anteroposterior patterning. EMBO Rep. 2019;20(6):e45842. https://doi.org/10.15252/embr.201845842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Veit G, Kobbe B, Keene DR, Paulsson M, Koch M, Wagener R. Collagen XXVIII, a novel von Willebrand factor A domain-containing protein with many imperfections in the collagenous domain. J Biol Chem. 2006;281(6):3494–504. https://doi.org/10.1074/jbc.M509333200.

    Article  CAS  PubMed  Google Scholar 

  29. Paredes I, Himmels P, de Almodóvar CR. Neurovascular communication during CNS development. Dev Cell. 2018;45(1):10–32. https://doi.org/10.1016/j.devcel.2018.01.023.

    Article  CAS  PubMed  Google Scholar 

  30. Bahney J, von Bartheld CS. The cellular composition and glia-neuron ratio in the spinal cord of a human and a nonhuman primate: comparison with other species and brain regions. Anat Rec (Hoboken). 2018;301(4):697–710. https://doi.org/10.1002/ar.23728.

    Article  PubMed  Google Scholar 

  31. Liao KH, Chang SJ, Chang HC, et al. Endothelial angiogenesis is directed by RUNX1T1-regulated VEGFA, BMP4 and TGF-β2 expression. PLoS ONE. 2017;12(6):e0179758. https://doi.org/10.1371/journal.pone.0179758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jovanovic VM, Salti A, Tilleman H, et al. BMP/SMAD pathway promotes neurogenesis of midbrain dopaminergic neurons in vivo and in human induced pluripotent and neural stem cells. J Neurosci. 2018;38(7):1662–76. https://doi.org/10.1523/JNEUROSCI.1540-17.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang L, Liu S, Wang Y. Role of bone morphogenetic protein-2/4 in astrocyte activation in neuropathic pain. Mol Pain. 2019;15:1744806919892100. https://doi.org/10.1177/1744806919892100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu X, Yan J, Bregere C, et al. RBM3 promotes neurogenesis in a niche-dependent manner via IMP2-IGF2 signaling pathway after hypoxic-ischemic brain injury. Nat Commun. 2019;10(1):3983. https://doi.org/10.1038/s41467-019-11870-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De La Fuente AG, Lange S, Silva ME, et al. Pericytes stimulate oligodendrocyte progenitor cell differentiation during CNS remyelination. Cell Rep. 2017;20(8):1755–64. https://doi.org/10.1016/j.celrep.2017.08.007.

    Article  CAS  PubMed  Google Scholar 

  36. Uemura MT, Maki T, Ihara M, Lee VMY, Trojanowski JQ. Brain microvascular pericytes in vascular cognitive impairment and dementia. Front Aging Neurosci. 2020;12:80. https://doi.org/10.3389/fnagi.2020.00080.

Download references

Funding

This work is supported by the foreign Ph.D. students inviting program (2020), The Uehara Memorial Foundation, Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzuru Ito.

Ethics declarations

Conflict of interest

The corresponding author Yuzuru Ito belongs to CHIYODA Corporation, Kanagawa, Japan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 5781 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, S., Ito, Y. Vasculature cells control neuroglial co-localization and synaptic connection in a central nervous system tissue mimic system. Human Cell 36, 1938–1947 (2023). https://doi.org/10.1007/s13577-023-00955-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-00955-x

Keywords

Navigation