Log in

Evaluation of the programmed death-ligand 1 mRNA expression and immunopositivity and their correlation with survival outcomes in Indian lung cancer patients

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

The presence of membranous immunopositivity of programmed death-ligand 1 (PD-L1) in tumors serves as a key determinant of response to immune checkpoint inhibitors. However, there are very limited studies on the evaluation of the PD-L1 mRNA expression and immunopositivity and their correlation with therapeutic response and survival outcomes, especially in Indian lung cancer patients. In this prospective study, conducted between 2017 and 2020, we collected biopsies and surgically resected tumors from 173 lung cancer patients. PD-L1 immunopositivity and mRNA expression were determined by immunohistochemistry using SP263 assay and qRT–PCR, respectively. PD-L1 expression was correlated with various clinicopathological variables, response to therapy, and survival outcomes using appropriate statistical methods. The median age was 60 years (range 33–81 years) with the majority of patients being male (86.5%) and smokers (83%). Histologically, the majority of patients were non-small cell lung cancer (89.4%) and of squamous cell carcinoma histology (64.3%). PD-L1 immunopositivity in tumor cells (tumor proportion score (TPS) ≥ 1%) was detected in 37.6%, while high immunopositivity (TPS ≥ 50%) was detected in 16.8% of lung cancer patients. Almost 76% of lung cancer patients with PD-L1 TPS ≥ 50% belonged to PD-L1 mRNA high-expression group. PD-L1 mRNA expression and immunopositivity did not correlate with response to therapy and survival outcomes. We conclude that PD-L1 immunopositivity and mRNA expression do not seem to serve as a prognostic biomarker for lung cancer patients treated with chemotherapy. More prospective studies should be planned to evaluate the predictive and prognostic relevance of PD-L1 expression in Indian lung cancer patients being treated with immune checkpoint inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

NSCLC:

Non-small cell lung cancer

SCLC:

Small cell lung cancer

LUSC:

Lung squamous cell carcinoma

LUAD:

Lung adenocarcinoma

RNA:

Ribonucleic acid

mRNA:

Messenger RNA

rRNA:

Ribosomal RNA

qRT–PCR:

Reverse transcription quantitative polymerase chain reaction

OS:

Overall survival

PFS:

Progression-free survival

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed death-ligand 1

ICIs:

Immune checkpoint inhibitors

IHC:

Immunohistochemistry

CT:

Computed tomography

MRI:

Magnetic resonance imaging

TPS:

Tumor proportion score

RECIST:

Response evaluation criteria in solid tumors

CR:

Complete response

PR:

Partial response

SD:

Stable disease

PD:

Progressive disease

CTCs:

Circulating tumor cells

EGFR:

Epidermal growth factor receptor

ALK:

Anaplastic lymphoma kinase

References

  1. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer statistics for the year 2020: An overview. Int J cancer [Internet]. 2021; Available from: http://www.ncbi.nlm.nih.gov/pubmed/33818764

  2. Ramalingam SS, Owonikoko TK, Khuri FR. Lung cancer: New biological insights and recent therapeutic advances. CA Cancer J Clin [Internet]. 2011;61:91–112. http://doi.wiley.com/https://doi.org/10.3322/caac.20102

  3. Gazdar AF, Bunn PA, Minna JD. Small-cell lung cancer: what we know, what we need to know and the path forward. Nat Rev Cancer [Internet]. 2017;17:725–37. http://www.nature.com/articles/nrc.2017.87

  4. Lengel HB, Connolly JG, Jones GD, Caso R, Zhou J, Sanchez-Vega F, et al. The Emerging Importance of Tumor Genomics in Operable Non-Small Cell Lung Cancer. Cancers (Basel) [Internet]. 2021;13. http://www.ncbi.nlm.nih.gov/pubmed/34359558

  5. Hirsch FR, Scagliotti G V, Mulshine JL, Kwon R, Curran WJ, Wu Y-L, et al. Lung cancer: current therapies and new targeted treatments. Lancet (London, England) [Internet]. 2017;389:299–311. http://www.ncbi.nlm.nih.gov/pubmed/27574741

  6. Anagnostou VK, Brahmer JR. Cancer immunotherapy: a future paradigm shift in the treatment of non-small cell lung cancer. Clin Cancer Res [Internet]. 2015;21:976–84. http://www.ncbi.nlm.nih.gov/pubmed/25733707

  7. Khanna P, Blais N, Gaudreau P-O, Corrales-Rodriguez L. Immunotherapy Comes of Age in Lung Cancer. Clin Lung Cancer [Internet]. 2017;18:13–22. http://www.ncbi.nlm.nih.gov/pubmed/27461776

  8. Munari E, Mariotti FR, Quatrini L, Bertoglio P, Tumino N, Vacca P, et al. PD-1/PD-L1 in Cancer: Pathophysiological, Diagnostic and Therapeutic Aspects. Int J Mol Sci [Internet]. 2021;22. http://www.ncbi.nlm.nih.gov/pubmed/34066087

  9. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol [Internet]. 2008;8:467–77. http://www.ncbi.nlm.nih.gov/pubmed/18500231

  10. Guan J, Lim KS, Mekhail T, Chang C-C. Programmed Death Ligand-1 (PD-L1) Expression in the Programmed Death Receptor-1 (PD-1)/PD-L1 Blockade: A Key Player Against Various Cancers. Arch Pathol Lab Med [Internet]. 2017;141:851–61. http://www.ncbi.nlm.nih.gov/pubmed/28418281

  11. Sun C, Mezzadra R, Schumacher TN. Regulation and Function of the PD-L1 Checkpoint. Immunity [Internet]. 2018;48:434–52. http://www.ncbi.nlm.nih.gov/pubmed/29562194

  12. Liu D, Wang S, Bindeman W. Clinical applications of PD-L1 bioassays for cancer immunotherapy. J Hematol Oncol [Internet]. 2017;10:110. http://www.ncbi.nlm.nih.gov/pubmed/28514966

  13. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med [Internet]. 2015;372:2018–28. http://www.ncbi.nlm.nih.gov/pubmed/25891174

  14. Herbst RS, Baas P, Kim D-W, Felip E, Pérez-Gracia JL, Han J-Y, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet (London, England) [Internet]. 2016;387:1540–50. http://www.ncbi.nlm.nih.gov/pubmed/26712084

  15. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med [Internet]. 2016;375:1823–33. http://www.ncbi.nlm.nih.gov/pubmed/27718847

  16. Vallonthaiel AG, Malik PS, Singh V, Kumar V, Kumar S, Sharma MC, et al. Clinicopathologic correlation of programmed death ligand-1 expression in non-small cell lung carcinomas: A report from India. Ann Diagn Pathol [Internet]. 2017;31:56–61. http://www.ncbi.nlm.nih.gov/pubmed/29146060

  17. Jain D, Sukumar S, Mohan A, Iyer VK. Programmed death-ligand 1 immunoexpression in matched biopsy and liquid-based cytology samples of advanced stage non-small cell lung carcinomas. Cytopathology [Internet]. 2018;29:550–7. http://www.ncbi.nlm.nih.gov/pubmed/29938855

  18. Domadia KR, Batra U, Jain P, Sharma M, Gupta S, Bothra SJ, et al. Retrospective evaluation of PD-L1 expression in tumor tissue of patients with lung carcinoma and correlation with clinical and demographical data from a tertiary care institute of northern India. Abstr B ESMO Asia Congr 23–25 Novemb 2018, Singapore [Internet]. Elsevier Masson SAS; 2018;29:ix153. https://doi.org/10.1093/annonc/mdy425.009

  19. Nambirajan A, Husain N, Shukla S, Kumar S, Jain D. Comparison of laboratory-developed test & validated assay of programmed death ligand-1 immunohistochemistry in non-small-cell lung carcinoma. Indian J Med Res [Internet]. 2019;150:376–84. http://www.ncbi.nlm.nih.gov/pubmed/31823919

  20. Kumar M, Guleria B, Swamy S, Soni S. Correlation of programmed death-ligand 1 expression with gene expression and clinicopathological parameters in Indian patients with non-small cell lung cancer. Lung India [Internet]. 37:145–50. http://www.ncbi.nlm.nih.gov/pubmed/32108600

  21. Guleria P, Kumar S, Malik PS, Jain D. PD-L1 Expression in Small Cell and Large Cell Neuroendocrine Carcinomas of Lung: an Immunohistochemical Study with Review of Literature. Pathol Oncol Res [Internet]. 2020;26:2363–70. http://www.ncbi.nlm.nih.gov/pubmed/32506394

  22. Jacob S. Distribution and Expression of Programmed Death Ligand -1 (PD-L1) in Non-Small Cell Carcinomas of the Lung in a Tertiary Care Centre in South India. Turk Patoloji Derg [Internet]. 2021;37:139–44. http://www.ncbi.nlm.nih.gov/pubmed/33973642

  23. Jain E, Sharma S, Aggarwal A, Bhardwaj N, Dewan A, Kumar A, et al. PD-L1 expression and its clinicopathologic and genomic correlation in the non-small cell lung carcinoma patients: An Indian perspective. Pathol Res Pract [Internet]. 2021;153497. http://www.ncbi.nlm.nih.gov/pubmed/34053784

  24. Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The Eighth Edition Lung Cancer Stage Classification. Chest [Internet]. 2017;151:193–203. http://www.ncbi.nlm.nih.gov/pubmed/27780786

  25. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer [Internet]. 2009;45:228–47. http://www.ncbi.nlm.nih.gov/pubmed/19097774

  26. Chen M, Xu Y, Zhao J, Li J, Liu X, Zhong W, et al. Feasibility and reliability of evaluate PD-L1 expression determination using small biopsy specimens in non-small cell lung cancer. Thorac cancer [Internet]. 2021;12:2339–44. http://www.ncbi.nlm.nih.gov/pubmed/34291566

  27. Cooper WA, Tran T, Vilain RE, Madore J, Selinger CI, Kohonen-Corish M, et al. PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma. Lung Cancer [Internet]. 2015;89:181–8. http://www.ncbi.nlm.nih.gov/pubmed/26024796

  28. Pawelczyk K, Piotrowska A, Ciesielska U, Jablonska K, Gletzel-Plucinska N, Grzegrzolka J, et al. Role of PD-L1 Expression in Non-Small Cell Lung Cancer and Their Prognostic Significance according to Clinicopathological Factors and Diagnostic Markers. Int J Mol Sci [Internet]. 2019;20. http://www.ncbi.nlm.nih.gov/pubmed/30769852

  29. Wang Y, Wu J, Deng J, She Y, Chen C. The detection value of PD-L1 expression in biopsy specimens and surgical resection specimens in non-small cell lung cancer: a meta-analysis. J Thorac Dis [Internet]. 2021;13:4301–10. http://www.ncbi.nlm.nih.gov/pubmed/34422357

  30. Kitazono S, Fujiwara Y, Tsuta K, Utsumi H, Kanda S, Horinouchi H, et al. Reliability of Small Biopsy Samples Compared With Resected Specimens for the Determination of Programmed Death-Ligand 1 Expression in Non--Small-Cell Lung Cancer. Clin Lung Cancer [Internet]. 2015;16:385–90. http://www.ncbi.nlm.nih.gov/pubmed/25937270

  31. Ilie M, Long-Mira E, Bence C, Butori C, Lassalle S, Bouhlel L, et al. Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: a potential issue for anti-PD-L1 therapeutic strategies. Ann Oncol Off J Eur Soc Med Oncol [Internet]. 2016;27:147–53. http://www.ncbi.nlm.nih.gov/pubmed/26483045

  32. Büttner R, Gosney JR, Skov BG, Adam J, Motoi N, Bloom KJ, et al. Programmed Death-Ligand 1 Immunohistochemistry Testing: A Review of Analytical Assays and Clinical Implementation in Non-Small-Cell Lung Cancer. J Clin Oncol [Internet]. 2017;35:3867–76. http://www.ncbi.nlm.nih.gov/pubmed/29053400

  33. Yasuda Y, Ozasa H, Kim YH. PD-L1 Expression in Small Cell Lung Cancer. J Thorac Oncol [Internet]. 2018;13:e40–1. http://www.ncbi.nlm.nih.gov/pubmed/29472058

  34. Farrag M, Ibrahim E, Abdelwahab H, Elsergany A, Elhadidy T. PDL-1 expression in lung carcinoma and its correlation with clinicopathological and prognostic characteristics. J Immunoassay Immunochem [Internet]. 2021;1–12. http://www.ncbi.nlm.nih.gov/pubmed/34106820

  35. Acheampong E, Abed A, Morici M, Bowyer S, Amanuel B, Lin W, et al. Tumour PD-L1 Expression in Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Cells [Internet]. 2020;9. http://www.ncbi.nlm.nih.gov/pubmed/33142852

  36. Lee YS, Lim JH, Ryu W, Park MH, Kim L, Kim K, et al. The clinical impact of three validated PD-L1 immunohistochemistry assays as a prognostic factor in small cell lung cancer. Transl lung cancer Res [Internet]. 2021;10:2539–50. http://www.ncbi.nlm.nih.gov/pubmed/34295660

  37. Rizvi NA, Mazières J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol [Internet]. 2015;16:257–65. http://www.ncbi.nlm.nih.gov/pubmed/25704439

  38. Herbst RS, Soria J-C, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature [Internet]. 2014;515:563–7. http://www.ncbi.nlm.nih.gov/pubmed/25428504

  39. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science [Internet]. 2015;348:124–8. http://www.ncbi.nlm.nih.gov/pubmed/25765070

  40. Antonia SJ, Balmanoukian A, Brahmer J, Ou S-HI, Hellmann MD, Kim S-W, et al. Clinical Activity, Tolerability, and Long-Term Follow-Up of Durvalumab in Patients With Advanced NSCLC. J Thorac Oncol [Internet]. 2019;14:1794–806. http://www.ncbi.nlm.nih.gov/pubmed/31228626

  41. Boeri M, Milione M, Proto C, Signorelli D, Lo Russo G, Galeone C, et al. Circulating miRNAs and PD-L1 Tumor Expression Are Associated with Survival in Advanced NSCLC Patients Treated with Immunotherapy: a Prospective Study. Clin Cancer Res [Internet]. 2019;25:2166–73. http://www.ncbi.nlm.nih.gov/pubmed/30617131

  42. Doroshow DB, Wei W, Gupta S, Zugazagoitia J, Robbins C, Adamson B, et al. Programmed Death-Ligand 1 Tumor Proportion Score and Overall Survival From First-Line Pembrolizumab in Patients With Nonsquamous Versus Squamous NSCLC. J Thorac Oncol [Internet]. 2021. http://www.ncbi.nlm.nih.gov/pubmed/34455068

  43. Jazieh K, Gad M, Saad A, Wei W, Pennell NA. Tumor PD-L1 expression is associated with outcomes in stage III non-small cell lung cancer (NSCLC) patients treated with consolidation durvalumab. Transl lung cancer Res [Internet]. 2021;10:3071–8. http://www.ncbi.nlm.nih.gov/pubmed/34430348

  44. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet [Internet]. 2016;387:1837–46. https://linkinghub.elsevier.com/retrieve/pii/S0140673616005870

  45. Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet (London, England) [Internet]. 2017;389:255–65. http://www.ncbi.nlm.nih.gov/pubmed/27979383

  46. Yang Q, Chen M, Gu J, Niu K, Zhao X, Zheng L, et al. Novel Biomarkers of Dynamic Blood PD-L1 Expression for Immune Checkpoint Inhibitors in Advanced Non-Small-Cell Lung Cancer Patients. Front Immunol [Internet]. 2021;12:665133. http://www.ncbi.nlm.nih.gov/pubmed/33936103

  47. Kim H, Kwon HJ, Park SY, Park Y, Park E, Chung J-H. Clinicopathological analysis and prognostic significance of programmed cell death-ligand 1 protein and mRNA expression in non-small cell lung cancer. PLoS One [Internet]. 2018;13:e0198634. http://www.ncbi.nlm.nih.gov/pubmed/29856861

  48. Kim G-J, Lee J-H, Park W-J, Lee H-W, Hwang I-S, Lee DH. The Prognostic Value of Measuring PD-L1 mRNA Expression Levels in Surgically Resected Non-Small Cell Lung Cancer. Ann Clin Lab Sci [Internet]. 2019;49:317–23. http://www.ncbi.nlm.nih.gov/pubmed/31308030

  49. Sepesi B, Nelson DB, Mitchell KG, Gibbons DL, Heymach J V, Vaporciyan AA, et al. Prognostic Value of PD-L1 mRNA Sequencing Expression Profile in Non-Small Cell Lung Cancer. Ann Thorac Surg [Internet]. 2018;105:1621–6. http://www.ncbi.nlm.nih.gov/pubmed/29510096

  50. Lafuente-Sanchis A, Zúñiga Á, Estors M, Martínez-Hernández NJ, Cremades A, Cuenca M, et al. Association of PD-1, PD-L1, and CTLA-4 Gene Expression and Clinicopathologic Characteristics in Patients With Non-Small-Cell Lung Cancer. Clin Lung Cancer [Internet]. 2017;18:e109–16. http://www.ncbi.nlm.nih.gov/pubmed/27816393

  51. Nicolazzo C, Raimondi C, Mancini M, Caponnetto S, Gradilone A, Gandini O, et al. Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor Nivolumab. Sci Rep [Internet]. 2016;6:31726. http://www.ncbi.nlm.nih.gov/pubmed/27553175

  52. Guibert N, Delaunay M, Lusque A, Boubekeur N, Rouquette I, Clermont E, et al. PD-L1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumab. Lung Cancer [Internet]. 2018;120:108–12. http://www.ncbi.nlm.nih.gov/pubmed/29748004

  53. Del Re M, Marconcini R, Pasquini G, Rofi E, Vivaldi C, Bloise F, et al. PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. Br J Cancer [Internet]. 2018;118:820–4. http://www.ncbi.nlm.nih.gov/pubmed/29509748

  54. Kim DH, Kim H, Choi YJ, Kim SY, Lee J-E, Sung KJ, et al. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp Mol Med [Internet]. 2019;51:1–13. http://www.nature.com/articles/s12276-019-0295-2

  55. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature [Internet]. 2018;560:382–6. http://www.nature.com/articles/s41586-018-0392-8

  56. Marzec M, Zhang Q, Goradia A, Raghunath PN, Liu X, Paessler M, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci U S A [Internet]. 2008;105:20852–7. http://www.ncbi.nlm.nih.gov/pubmed/19088198

  57. Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov [Internet]. 2013;3:1355–63. http://www.ncbi.nlm.nih.gov/pubmed/24078774

  58. Gainor JF, Shaw AT, Sequist L V, Fu X, Azzoli CG, Piotrowska Z, et al. EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis. Clin Cancer Res [Internet]. 2016;22:4585–93. http://www.ncbi.nlm.nih.gov/pubmed/27225694

  59. Ilie M, Hofman V, Dietel M, Soria J-C, Hofman P. Assessment of the PD-L1 status by immunohistochemistry: challenges and perspectives for therapeutic strategies in lung cancer patients. Virchows Arch [Internet]. 2016;468:511–25. http://www.ncbi.nlm.nih.gov/pubmed/26915032

  60. Lan B, Ma C, Zhang C, Chai S, Wang P, Ding L, et al. Association between PD-L1 expression and driver gene status in non-small-cell lung cancer: a meta-analysis. Oncotarget [Internet]. 2018;9:7684–99. http://www.ncbi.nlm.nih.gov/pubmed/29484144

Download references

Funding

This study is supported by an extramural research grant from Indian Council of Medical Research (ICMR), New Delhi (Grant No. 5/13/11/2019/NCD-III) and an intramural research grant from All India Institute of Medical Sciences, New Delhi (A-516).

Author information

Authors and Affiliations

Authors

Contributions

SK, MP, AM, IAM, and DJ performed laboratory experiments. SK and SKS performed data analysis. JS, PSM, SK, and AM provided clinical samples, and epidemiological and survival data. All the authors contributed significantly in the writing of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by ethics committee of All India Institute of Medical Sciences, New Delhi (Ref. No. IEC-149/07.04.2017, RP-14/2017 and IEC-308/03.05.2019). This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Pandey, M., Mir, I.A. et al. Evaluation of the programmed death-ligand 1 mRNA expression and immunopositivity and their correlation with survival outcomes in Indian lung cancer patients. Human Cell 35, 286–298 (2022). https://doi.org/10.1007/s13577-021-00647-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00647-4

Keywords

Navigation