Log in

Nouvelles pistes dans le traitement du sepsis — Modulation β-adrénergique au cours du sepsis

Novel approaches to the treatment of sepsis — β-adrenergic modulation during sepsis

  • Enseignement Supérieur en Réanimation
  • Published:
Réanimation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Références

  1. Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554

    Article  PubMed  Google Scholar 

  2. Martin CM, Priestap F, Fisher H, et al (2009) A prospective, observational registry of patients with severe sepsis: the Canadian Sepsis Treatment and Response Registry. Crit Care Med 37:81–88

    Article  PubMed  Google Scholar 

  3. Annane D, Aegerter P, Jars-Guincestre MC, Guidet B (2003) Current epidemiology of septic shock: the CUB-Rea Network. Am J Respir Crit Care Med 168:165–172

    Article  PubMed  Google Scholar 

  4. Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891

    Article  CAS  PubMed  Google Scholar 

  5. Boldt J, Menges T, Kuhn D, et al (1995) Alterations in circulating vasoactive substances in the critically ill: a comparison between survivors and non-survivors. Intensive Care Med 21:218–225

    Article  CAS  PubMed  Google Scholar 

  6. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve: an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52:595–638

    CAS  PubMed  Google Scholar 

  7. Wallukat G (2002) The beta-adrenergic receptors. Herz 27:683–690

    Article  PubMed  Google Scholar 

  8. Sigmund M, Jakob H, Becker H, et al (1996) Effects of metoprolol on myocardial beta-adrenoceptors and Gi alpha-proteins in patients with congestive heart failure. Eur J Clin Pharmacol 51:127–132

    Article  CAS  PubMed  Google Scholar 

  9. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874

    Article  Google Scholar 

  10. Santangelo S, Gamelli RL, Shankar R (2001) Myeloid commitment shifts toward monocytopoiesis after thermal injury and sepsis. Ann Surg 233:97–106

    Article  CAS  PubMed  Google Scholar 

  11. Pinheiro da Silva F, Nizet V (2009) Cell death during sepsis: integration of disintegration in the inflammatory response to overwhelming infection. Apoptosis 14:509–521

    Article  PubMed  Google Scholar 

  12. Pinsky MR (2004) Pathophysiology of sepsis and multiple organ failure: pro- versus anti-inflammatory aspects. Contrib Nephrol 144:31–43

    Article  PubMed  Google Scholar 

  13. Muthu K, Deng J, Gamelli R, et al (2005) Adrenergic modulation of cytokine release in bone marrow progenitor-derived macrophage following polymicrobial sepsis. J Neuroimmunol 158:50–57

    Article  CAS  PubMed  Google Scholar 

  14. Sanders VM, Baker RA, Ramer-Quinn DS, et al (1997) Differential expression of the beta2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol 158:4200–4210

    CAS  PubMed  Google Scholar 

  15. Ramer-Quinn DS, Baker RA, Sanders VM (1997) Activated T helper 1 and T helper 2 cells differentially express the beta- 2-adrenergic receptor: a mechanism for selective modulation of T helper 1 cell cytokine production. J Immunol 159:4857–4867

    CAS  PubMed  Google Scholar 

  16. Oberbeck R, Schmitz D, Wilsenack K, et al (2004) Adrenergic modulation of survival and cellular immune functions during polymicrobial sepsis. Neuroimmunomodulation 11:214–223

    Article  CAS  PubMed  Google Scholar 

  17. Schmitz D, Wilsenack K, Lendemanns S, et al (2007) Betaadrenergic blockade during systemic inflammation: impact on cellular immune functions and survival in a murine model of sepsis. Resuscitation 72:286–294

    Article  CAS  PubMed  Google Scholar 

  18. Sekut L, Champion BR, Page K, et al (1995) Anti-inflammatory activity of salmeterol: down-regulation of cytokine production. Clin Exp Immunol 99:461–466

    Article  CAS  PubMed  Google Scholar 

  19. Tsao CM, Chen SJ, Shih MC, et al (2010) Effects of terbutaline on circulatory failure and organ dysfunction induced by peritonitis in rats. Intensive Care Med 36:1571–1578

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki T, Morisaki H, Serita R, et al (2005) Infusion of the betaadrenergic blocker esmolol attenuates myocardial dysfunction in septic rats. Crit Care Med 33:2294–2301

    Article  CAS  PubMed  Google Scholar 

  21. Hagiwara S, Iwasaka H, Maeda H, et al (2009) An ultrashortacting beta1-adrenoceptor antagonist, has protective effects in an LPS-induced systemic inflammation model. Shock 31:515–520

    Article  CAS  PubMed  Google Scholar 

  22. Ackland GL, Yao ST, Rudiger A, et al (2010) Cardioprotection, attenuated systemic inflammation, and survival benefit of beta1- adrenoceptor blockade in severe sepsis in rats. Crit Care Med 38:388–394

    Article  CAS  PubMed  Google Scholar 

  23. Parker MM, Shelhamer JH, Bacharach SL, et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490

    CAS  PubMed  Google Scholar 

  24. Parker MM, Suffredini AF, Natanson C, et al (1989) Responses of left ventricular function in survivors and nonsurvivors of septic shock. J Crit Care 4:19–25

    Article  Google Scholar 

  25. Court O, Kumar A, Parrillo JE (2002) Clinical review: myocardial depression in sepsis and septic shock. Crit Care 6:500–508

    Article  PubMed  Google Scholar 

  26. Zanotti Cavazzoni SL, Guglielmi M, Parrillo JE, et al (2010) Ventricular dilation is associated with improved cardiovascular performance and survival in sepsis. Chest 138:848–855

    Article  PubMed  Google Scholar 

  27. Rudiger A, Singer M (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 35:1599–1608

    Article  PubMed  Google Scholar 

  28. Pathan N, Hemingway CA, Alizadeh AA, et al (2004) Role of interleukin-6 in myocardial dysfunction of meningococcal septic shock. Lancet 363:203–209

    Article  CAS  PubMed  Google Scholar 

  29. Zhang H, Wang HY, Bassel-Duby R, et al (2007) Role of interleukin-6 in cardiac inflammation and dysfunction after burn complicated by sepsis. Am J Physiol Heart Circ Physiol 292: H2408–H2416

    Article  CAS  PubMed  Google Scholar 

  30. Feldman AM, Bristow MR (1990) The beta-adrenergic pathway in the failing human heart: implications for inotropic therapy. Cardiology 77(Suppl 1):1–32

    Article  PubMed  Google Scholar 

  31. Piper RD, Li FY, Myers ML, Sibbald WJ (1999) Effects of isoproterenol on myocardial structure and function in septic rats. J Appl Physiol 86:993–1001

    CAS  PubMed  Google Scholar 

  32. Romanosky AJ, Giaimo ME, Shepherd RE, Burns AH (1986) The effect of in vivo endotoxin on myocardial function in vitro. Circ Shock 19:1–12

    CAS  PubMed  Google Scholar 

  33. Tang C, Yang J, Wu LL, et al (1998) Phosphorylation of betaadrenergic receptor leads to its redistribution in rat heart during sepsis. Am J Physiol 274:R1078–R1086

    CAS  PubMed  Google Scholar 

  34. Hayes MA, Timmins AC, Yau EH, et al (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722

    Article  CAS  PubMed  Google Scholar 

  35. Prabhu SD, Chandrasekar B, Murray DR, Freeman GL (2000) Beta-adrenergic blockade in develo** heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation 101:2103–2109

    CAS  PubMed  Google Scholar 

  36. Blanco J, Muriel-Bombin A, Sagredo V, et al (2008) Incidence, organ dysfunction and mortality in severe sepsis: a Spanish multicentre study. Crit Care 12:R158

    PubMed  Google Scholar 

  37. Abraham E, Singer M (2007) Mechanisms of sepsis-induced organ dysfunction. Crit Care Med 35:2408–2416

    Article  PubMed  Google Scholar 

  38. Fink MP (2002) Bench-to-bedside review: cytopathic hypoxia. Crit Care 6:491–499

    Article  PubMed  Google Scholar 

  39. Berk JL, Hagen JF, Beyer WH, et al (1969) The treatment of endotoxin shock by beta adrenergic blockade. Ann Surg 169:74–81

    Article  CAS  PubMed  Google Scholar 

  40. Nakamura A, Imaizumi A, Yanagawa Y, et al (2004) Beta (2)- adrenoceptor activation attenuates endotoxin-induced acute renal failure. J Am Soc Nephrol 15:316–325

    Article  CAS  PubMed  Google Scholar 

  41. Oliveira PJ, Esteves T, Rolo AP, et al (2004) Carvedilol inhibits the mitochondrial permeability transition by an antioxidant mechanism. Cardiovasc Toxicol 4:11–20

    Article  CAS  PubMed  Google Scholar 

  42. No authors listed] (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 17:354–381

    Google Scholar 

  43. Pontet J, Contreras P, Curbelo A, et al (2003) Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. J Crit Care 18:156–163

    Article  PubMed  Google Scholar 

  44. Schmidt H, Muller-Werdan U, Hoffmann T, et al (2005) Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med 33:1994–2002

    Article  PubMed  Google Scholar 

  45. Goldstein B, Kempski MH, Stair D, et al (1995) Autonomic modulation of heart rate variability during endotoxin shock in rabbits. Crit Care Med 23:1694–16702

    Article  CAS  PubMed  Google Scholar 

  46. Niemela MJ, Airaksinen KE, Huikuri HV (1994) Effect of betablockade on heart rate variability in patients with coronary artery disease. J Am Coll Cardiol 23:1370–1377

    Article  CAS  PubMed  Google Scholar 

  47. Aronson D, Burger AJ (2001) Effect of beta-blockade on heart rate variability in decompensated heart failure. Int J Cardiol 79:31–39

    Article  CAS  PubMed  Google Scholar 

  48. Schmittinger CA, Dunser MW, Haller M, et al (2008) Combined milrinone and enteral metoprolol therapy in patients with septic myocardial depression. Crit Care 12:R99

    Article  PubMed  Google Scholar 

  49. Gore DC, Wolfe RR (2006) Hemodynamic and metabolic effects of selective beta1 adrenergic blockade during sepsis. Surgery 139:686–694

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. de Montmollin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Montmollin, E., Annane, D. Nouvelles pistes dans le traitement du sepsis — Modulation β-adrénergique au cours du sepsis. Réanimation 20 (Suppl 2), 441–446 (2011). https://doi.org/10.1007/s13546-010-0133-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-010-0133-y

Navigation