Log in

Fractional models for analysis of economic risks

  • Review
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this review paper we try to describe some recent results on modeling and analysis of economic risks by using the techniques of fractional calculus. The use of fractional order operators in the risk theory is due to the presence of long and short memory in most of economic models and their nonlocality over time. We emphasize on the use and interpretation of the Dzherbashian-Caputo fractional derivative in the discussed matters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguilar, J.-Ph., Korbel, J., Luchko, Yu.: Applications of the fractional diffusion equation to option pricing and risk calculations. Mathematics 7, 796 (2019). https://doi.org/10.3390/math7090796

    Article  Google Scholar 

  2. Amihud, Y., Mendelson, H.: The pricing of illquidity as a characteristic and as risk. Multinational Finance Journal 19(3), 149–168 (2015). https://doi.org/10.17578/19-3-1

    Article  Google Scholar 

  3. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos, 2nd edition. World Scientific, Singapore (2017)

  4. Barkoulas, J.T., Baum, C.F., Caglayan, M.: Fractional monetary dynamics. Applied Economics 31(11), 1393–1400 (1999). https://doi.org/10.1080/000368499323274

    Article  Google Scholar 

  5. Beghin, L., Macci, C.: Large deviations for fractional Poisson processes. Stat. Probab. Lett. 83, 1193–1202 (2013). https://doi.org/10.1016/j.spl.2013.01.017

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertoin, J.: Subordinators: Examples and applications. In: Bernard, P. (eds) Lectures on Probability Theory and Statistics, pp. 1–91. Springer: Berlin/Heidelberg (1999). https://doi.org/10.1007/978-3-540-48115-7-1

  7. Biard, R., Saussereau, B.: Fractional Poisson process: long range dependence and applications in ruin theory. J. Appl. Probab. 51, 727–740 (2014). https://doi.org/10.1239/jap/1409932670

    Article  MathSciNet  MATH  Google Scholar 

  8. Black, F., Cox, J.C.: Valuing corporate securities: Some effects of bond indenture provisions. Journal of Financial and Quantitative Analysis 31(2), 351–367 (1976). https://doi.org/10.1111/j.1540-6261.1976.tb01891.x

    Article  Google Scholar 

  9. Black, F., Scholes, M.: The pricing of options and corporate liabilities. Journal of Political Economy. 81(3), 637–654 (1973). https://doi.org/10.1086/260062

    Article  MathSciNet  MATH  Google Scholar 

  10. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307–327 (1986). https://doi.org/10.1016/0304-4076(86)90063-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Bollerslev, T., Osterrieder, D., Sizova, N., Tauchen, G.: Risk and return: Long-run relations, fractional cointegration, and return predictability. Journal of Financial Economics 108(2), 409–424 (2013). https://doi.org/10.1016/j.jfineco.2013.01.002

    Article  Google Scholar 

  12. Carr, P., Wu, L.: The finite moment log stable process and option pricing. J. Financ. 58, 753–778 (2003). https://doi.org/10.1111/1540-6261.00544

    Article  Google Scholar 

  13. Chen, W.W., Hurvich, C.M.: Semiparametric estimation of fractional cointegrating subspaces. The Annals of Statistics 34(6), 2939–2979 (2006). https://doi.org/10.1214/009053606000000894

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantinescu, C.D., Ramirez, J.M., Zhu, Wei R.: An application of fractional differential equations to risk theory. Finance Stoch. 23, 1001–1024 (2019). https://doi.org/10.1007/s00780-019-00400-8

  15. Constantinescu, C.D., Samorodnitsky, G., Zhu, Wei R.: Ruin probabilities in classical risk models with gamma claims. Scand. Actuar. J. 2018, 555–575 (2018). https://doi.org/10.1080/03461238.2017.1402817

  16. Cont, R.: Volatility clustering in financial market: Empirical facts and agent-based models. In: Teyssiére, G., Kirman, A.P. eds. Long Memory in Economics, 289–309, Springer Verlag, Berlin-Heidelberg (2007). https://doi.org/10.1007/978-3-540-34625-8-10

  17. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer-Verlag, Berlin (2010). https://doi.org/10.1007/978-3-642-14574-2

  18. Diethelm, K.: General theory of Caputo-type fractional differential equations. In: Kochubei, A., Luchko, Yu. (eds.) Handbook of Fractional Calculus with Applications: Basic Theory, Vol. 2, pp. 1–20 Walter de Gruyter GmbH, Berlin (2019). https://doi.org/10.1515/9783110571660

  19. Duong Hao, Volding, D.: Modelling continuous risk variables: Introduction to fractional polynomial regression. VJS 1(2), c111402 (2014)

  20. Dupret, J.-L., Hainaut, D.: A fractional Hawkes process for illiquidity modeling. LIDAM Discussion Paper ISBA 2023 / 01, access 25 Feb. 2023 https://uclouvain.be/en/research-institutes/lidam/isba/publication.html

  21. Engle, R.F., Lilien, D.M., Robins, R.P.: Estimating time varying risk premia in the term structure: the ARCH-M model. Econometrica 55, 391–407 (1987). https://doi.org/10.2307/1913242

    Article  Google Scholar 

  22. Gerasimov, A.N.: A generalization of linear laws of deformation and its application to internal friction problem. Prikl. Mat. Mekh. 12, 251–260 (1948). (in Russian)

  23. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.: Mittag-Leffler Functions: Related Topics and Applications, 2nd extended and revised edition. Springer, Berlin - New York, 2020. https://doi.org/10.1007/978-3-662-43930-2

  24. Granger, C.W.J.: The typical spectral shape of an economic variable. Econometrica 34(1), 150–161 (1966). https://doi.org/10.2307/1909859

    Article  Google Scholar 

  25. Granger, C.W.J., Joyeux, R.: An introduction to long memory time series models and fractional differencing. Journal of Time Series Analysis 1, 15–39 (1980). https://doi.org/10.1111/j.1467-9892.1980.tb00297.x

    Article  MathSciNet  MATH  Google Scholar 

  26. Granger, C.W.J., Lee, T.H.: Multicointegration. In: (G. F. Rhodes, Jr. and T. B. Fomby eds.) Advances in Econometrics: Cointegration, Spurious Regressions and unit Roots. JAI Press, Greenwich, 8, 71–84 (1990)

  27. Hartl, T., Weigand, R.: Multivariate Fractional Components Analysis. University of Regensburg Working Papers in Business, Economics and Management Information Systems 2019, access 25 Feb. 2023

  28. Heath, D., Jarrow, R., Morton, A.: Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation. Econometrica 60(1), 77–105 (1992)

  29. Hosking, J.R.M.: Fractional differencing. Biometrika 68(1), 165–176 (1981). https://doi.org/10.1093/biomet/68.1.165

    Article  MathSciNet  MATH  Google Scholar 

  30. Jarrow, R.A.: The Economic Foundations of Risk Management: Theory, Practice, and Applications. World Scientific, New Jersey (2016). https://doi.org/10.1142/10221

  31. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  32. Kumar, A., Leonenko, N.N., Pichler, A.: Fractional risk process in insurance. Mathematics and Financial Economics 14(4), 43–65 (2020). https://doi.org/10.1007/s11579-019-00244-y

    Article  MathSciNet  MATH  Google Scholar 

  33. Klages, R., Radons, G., Sokolov, I.M. (eds.): Anomalous Transport: Foundations and Applications. Wiley-VCH, Hoboken, NJ, USA (2008)

    Google Scholar 

  34. Lando, D.: Credit Risk Modeling: Theory and Application. Princeton University Press, Princeton, NJ (2004). https://doi.org/10.1007/978-3-540-71297-8-35

  35. Letnikov, A.V.: On the historical development of the theory of differentiation with arbitrary index. Sbornik Mathematics (Matematicheskii Sbornik) 3(2), 85–112 (1868) (in Russian). http://mi.mathnet.ru/eng/msb8048

  36. Li, S., Garrido, J.: On ruin on the Erlang (n) risk process. Insur. Math. Econom. 34, 391–408 (2004). https://doi.org/10.1016/j.insmatheco.2004.01.002

    Article  MathSciNet  MATH  Google Scholar 

  37. Luchko, Y.: Anomalous diffusion: models, their analysis, and interpretation. In: Rogosin, S.V., Koroleva, A.A. (eds.) Advances in Applied Analysis. pp. 115–146. Birkhäuser, Basel, Switzerland (2012). https://doi.org/10.1007/978-3-0348-0417-2

  38. Machado, J.A.T., Kiryakova, V., Mainardi, F.: Recent history of the fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011). https://doi.org/10.1016/j.cnsns

    Article  MathSciNet  MATH  Google Scholar 

  39. Machado, J.A.T., Kiryakova, V.: Recent history of the fractional calculus: data and statistics. In: Kochubei, A., Luchko, Yu. (eds.) Handbook of Fractional Calculus with Applications: Basic Theory, vol. 1, pp. 1–21. Walter de GruyterGmbH, Berlin (2019). https://doi.org/10.1515/9783110571622-001

  40. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Connecticut (2006)

    Google Scholar 

  41. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, 2nd edition. World Scientific, Singapore and Imperial College Press, London (2022). https://doi.org/10.1142/p926

  42. Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Martin, B.: Financial and Econometric Models for Credit Risk Management. Dissertation, 226 p. Karlsruhe (2003)

  44. Merton, R.C.: On pricing of corporate debt: the risk structure of interest rate. Journal of Finance 29(2), 449–470 (1974). https://doi.org/10.1111/j.1540-6261.1974.tb03058.x

    Article  Google Scholar 

  45. Pertsovsky, O.E.: The foreign exhange market modeling using long memory processes. Working paper WP2/2004/03. State University - Higher School of Economics, Moscow (2004) 52 p. (in Russian)

  46. Pirozzi, E.: On a fractional stochastic risk model with a random initial surplus and a multi-layer strategy. Mathematics 10, 570 (2022). https://doi.org/10.3390/math10040570

    Article  Google Scholar 

  47. Rabotnov, Yu.N.: Elements of Hereditary Solid Mechanics. MiR, Moscow (1980)

    MATH  Google Scholar 

  48. Rachev, S.T., Stoyanov, S.V., Fabozzi, F.J.: A Probability Metrics Approach to Financial Risk Measures. Wiley-Blackwell, Hoboken, New Jersey (2011)

    Book  Google Scholar 

  49. Robinson, P.: The distance between rival nonstationary fractional processes. Journal of Econometrics 128(2), 283–300 (2005). https://doi.org/10.1016/j.jeconom.2004.08.015

    Article  MathSciNet  MATH  Google Scholar 

  50. Rogosin, S., Mainardi, F.: George William Scott Blair - the pioneer of factional calculus in rheology. Comm. Appl. Indust. Math. 6(1), e481 (2014). https://doi.org/10.1685/journal.caim.481

    Article  MATH  Google Scholar 

  51. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  52. Shimko, D., Tejima, N., Van Deventer, D.: The pricing of risky debt when interest rates are stochastics. Journal of Fixed Income 3(2), 437–444 (1993). https://doi.org/10.1142/9789814759595-0010

    Article  Google Scholar 

  53. Shiryaev, A.N.: Essentials of Stochastic Finance, Volume 3: Facts, Models, Theory (Advanced Series on Statistical Science & Applied Probability). World Scientific, Singapore (1999)

  54. Sun, **chao: Yan, Litan: Mixed-fractional models to credit risk pricing. Journal of Statistical and Econometric Methods 1(3), 79–96 (2012)

    Google Scholar 

  55. Tarasova, V.V., Tarasov, V.E.: Economic interpretation of fractional derivatives. Progr. Fract. Differ. Appl. 3(1), 1–6 (2017). https://doi.org/10.18576/pfda/030101

    Article  Google Scholar 

  56. Tarasov, V.E., Tarasova, V.V.: Economic Dynamics with Memory: Fractional Calculus Approach. Walter de Gruyter GmbH, Berlin/Boston (2021). https://doi.org/10.1515/9783110627459

  57. Tejado, I., Valerio, D., Perez, E., Valerio, N.: Fractional calculus in economic growth modelling: the Spanish and Portuguese cases. Int. J. Dynamics and Control 5(1), 208–222 (2017). https://doi.org/10.1007/s40435-015-0219-5

    Article  MathSciNet  Google Scholar 

  58. Thorin, O.: The ruin problem in case the tail of the claim distribution is completely monotone. Scan. Actuar. J. 1973, 100–119 (1973). https://doi.org/10.1080/03461238.1973.10414977

    Article  MathSciNet  MATH  Google Scholar 

  59. Yang, Yanjun: Linear fractional differential equations in bank resource allocation and financial risk management model. Applied Mathematics and Nonlinear Sciences 7(1), 729–738 (2022). https://doi.org/10.2478/amns.2021.2.00148

    Article  MathSciNet  MATH  Google Scholar 

  60. Yarygina, I.Z., Gisin, V.B., Putko, B.A.: Fractal asset pricing models for financial risk management. Finance: Theory and Practice. 23(6), 117–130 (2019). https://doi.org/10.26794/2587-5671-2019-23-6-117-130

    Article  Google Scholar 

  61. Uchaikin, V. V.: Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory. Springer, Berlin - Higher Education Press, Bei**g (2013). https://doi.org/10.1007/978-3-642-33911-0

  62. Uchaikin, V. V.: Fractional Derivatives for Physicists and Engineers. Vol. II. Applications. Springer, Berlin - Higher Education Press, Bei**g (2013). https://doi.org/10.1007/978-3-642-33911-0

Download references

Acknowledgements

The research by the authors is partially supported by the State Program of the Scientific Investigations “Convergence-2025”, grant 1.7.01.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Rogosin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogosin, S., Karpiyenya, M. Fractional models for analysis of economic risks. Fract Calc Appl Anal 26, 2602–2617 (2023). https://doi.org/10.1007/s13540-023-00202-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-023-00202-y

Keywords

Mathematics Subject Classification

Navigation