Log in

Caputo delta weakly fractional difference equations

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, solutions of fractional difference equations with Caputo-type delta-based fractional difference operator of order \(\mu \sim 1\) are compared with solutions of corresponding limit difference equations with usual first-order forward difference. It is shown that the limit initial value problems differ substantially when \(\mu \rightarrow 1^-\) and \(\mu \rightarrow 1^+\). To derive convergence results, Gronwall type inequalities are proved for suitable fractional sum inequalities of general noninteger order. An illustrative example is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anastassiou, G.A.: Discrete fractional calculus and inequalities (2009). ar**v:0911.3370

  2. Anastassiou, G.A.: Intelligent Mathematics: Computational Analysis. Springer, Berlin (2010)

    MATH  Google Scholar 

  3. Atici, F.M., Eloe, P.W.: A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2(2), 165–176 (2007)

    MathSciNet  Google Scholar 

  4. Atici, F.M., Eloe, P.W.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137(3), 981–989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atici, F.M., Eloe, P.W.: Gronwall’s inequality on discrete fractional calculus. Comput. Math. Appl. 64(10), 3193–3200 (2012). https://doi.org/10.1016/j.camwa.2011.11.029

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, F., Luo, X., Zhou, Y.: Existence results for nonlinear fractional difference equation. Adv. Differ. Equ. 2011, 1–12 (2011). (Article ID 713201)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cong, N.D., Doan, T.S., Siegmund, S., Tuan, H.T.: On stable manifolds for planar fractional differential equations. Appl. Math. Comput. 226, 157–168 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diblík, J., Fečkan, M., Pospíšil, M.: Nonexistence of periodic solutions and \(S\)-asymptotically periodic solutions in fractional difference equations. Appl. Math. Comput. 257, 230–240 (2015). https://doi.org/10.1016/j.amc.2014.11.108

    Article  MathSciNet  MATH  Google Scholar 

  10. Fečkan, M.: Note on periodic solutions of fractional differential equations. Math. Methods Appl. Sci. 41(13), 5065–5073 (2018). https://doi.org/10.1002/mma.4953

    Article  MathSciNet  MATH  Google Scholar 

  11. Fečkan, M., Pospíšil, M.: Note on fractional difference Gronwall inequalities. Electron. J. Qual. Theory Differ. Equ. 44, 1–18 (2014)

  12. Fečkan, M., Pospíšil, M., Wang, J.: Note on weakly fractional differential equations. Adv. Differ. Equ. 2019(143), 11 (2019). https://doi.org/10.1186/s13662-019-2086-4

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferreira, R.A.C.: A discrete fractional Gronwall inequality. Proc. Am. Math. Soc. 140, 1605–1612 (2012). https://doi.org/10.1090/S0002-9939-2012-11533-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Goodrich, Ch.: Continuity fo solutions to discrete fractional initial value problems. Comput. Math. Appl. 59(11), 3489–3499 (2010). https://doi.org/10.1016/j.camwa.2010.03.040

    Article  MathSciNet  MATH  Google Scholar 

  15. Goodrich, Ch., Peterson, A.C.: Discrete Fractional Calculus. Springer, Switzerland (2015)

    Book  MATH  Google Scholar 

  16. Henríquez, H.R., Pierri, M., Táboas, P.: On \(S\)-asymptotically \(\omega \)-periodic functions on Banach spaces and applications. J. Math. Anal. Appl. 343, 1119–1130 (2008). https://doi.org/10.1016/j.jmaa.2008.02.023

    Article  MathSciNet  MATH  Google Scholar 

  17. Kershaw, D.: Some extensions of W. Gautschi’s inequalities for the gamma function. Math. Comput. 41(164), 607–611 (1983)

    MathSciNet  MATH  Google Scholar 

  18. Miller, K.S., Ross, M.: Fractional difference calculus. In: Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, Koriyama, pp. 139–152, Ellis Horwood Ser. Math. Appl., Horwood, Chichester (1989)

  19. Qi, F.: Bounds for the ratio of two gamma functions. J. Inequal. Appl. (2010). https://doi.org/10.1155/2010/493058

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, J., Fečkan, M., Zhou, Y.: Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 18(2), 246–256 (2013). https://doi.org/10.1016/j.cnsns.2012.07.004

    Article  MathSciNet  MATH  Google Scholar 

  21. Wendel, J.G.: Note on the gamma function. Am. Math. Mon. 55(9), 563–564 (1948). https://doi.org/10.2307/2304460

    Article  MathSciNet  Google Scholar 

  22. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

MF was supported in part by the Grants VEGA-MS 1/0358/20, VEGA-SAV 2/0127/20 and APVV-18-0308. MP was supported in part by the Grants VEGA-MS 1/0358/20, VEGA-SAV 2/0127/20 and APVV-18-0308. JRW was supported in part by the National Natural Science Foundation of China (12161015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Pospíšil.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fečkan, M., Pospíšil, M., Danca, MF. et al. Caputo delta weakly fractional difference equations. Fract Calc Appl Anal 25, 2222–2240 (2022). https://doi.org/10.1007/s13540-022-00093-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00093-5

Keywords

Mathematics Subject Classification

Navigation