Log in

Characterization of Radiochromic Hydrogel Dosimeter-Ferrous Xylenol Orange Enhanced to Have a Higher Melting Point

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Ferrous xylenol orange (FXO) radiochromic gelatin gel dosimeter has the potential to provide tridimensional dosimetry for the assessment of new technologies of treatment in radiotherapy. However, one problem with the present formulations of these gels is the low melting point of the gelatin matrix. To solve this problem, formaldehyde was added to this gel dosimeter to promote crosslinking in the gelatin matrix, thus increasing the melting point. Five different formulations of FXO gel were tested, the best melting point temperature found was 62 °C or higher, and the 0.210 mm2/hr of diffusion rate was obtained on the 8% gelatin with 3% formaldehyde, 75% lower than original formulation. To provide clinical uses of these dosimeters, this work deals with the dosimetric characterization of modified FXO. No energy dependence was found when irradiated with 6 MV and 15 MV beams; also, no dose rate dependence was found varying low to high dose rate, 100 to 1400 cGy/min. These characteristics allow this dosimeter to useful for clinical context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. C. Baldock, Y. De Deene, S. Doran, G. Ibbott, A. Jirasek, M. Lepage, K.B. McAuley, M. Oldham, L.J. Schreiner, Polymer gel dosimetry. Phys. Med. Biol. 55(5), R1–R63 (2010)

    Article  Google Scholar 

  2. L.J. Schreiner, Review of Fricke gel dosimeters. J. Phys: Conf. Ser. 3, 9–21 (2004)

    ADS  Google Scholar 

  3. H. Fricke, S. Morse, The chemical action of Roentgen rays on dilute ferrous sulphate solutions as a measure of dose Am. J Roent. Radium Ther. Nucl. Med 18, 430–432 (1927)

    Google Scholar 

  4. H. Fricke, H. Hart, Chemical dosimetry, vol. 2, in Radiation Dosimetry. ed. by F.H. Attix, W.C. Roesch (Academic Press, New York, 1955)

    Google Scholar 

  5. J.C. Gore, Y.S. Yang, R.I. Schulz, Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys. Med. Biol. 29, 1189–1197 (1984)

    Article  Google Scholar 

  6. B. Gupta, S. Nilekani, Ferrous ion oxidations by H, OH and H2O2 in aerated FBX dosimetry system. Radiat. Phys. Chem. 53, 643–650 (1998)

    Article  ADS  Google Scholar 

  7. M. Valente, W. Molina, L.C. Silva, R. Figueroa, F. Malano, P. Pérez, M. Santibañez, V. Vedelag, Fricke gel dosimeter with improved sensitivity for low-dose-level measurements Med. Phys. 17, 402–417 (2016)

    Google Scholar 

  8. N. Silva, P. Nicolucci, O. Baffa, Spatial resolution of magnetic resonance imaging Fricke-gel dosimetry is improved with a honeycomb phantom. Med. Phys. 30, 17–20 (2003)

    Article  Google Scholar 

  9. A. Appleby, A. Leghrouz, Imaging of radiation dose by visible color development in ferrous-agarose-xylenol orange gels Med. Phys. 18, 309–312 (1991)

    Google Scholar 

  10. R.U. Kelly, K.J. Jordan, J. Battista, Optical CT reconstruction of 3D dose distributions using the ferrous benzoic-xylenol (FBX) gel dosimeter. Med. Phys. 25, 1741–1750 (1998)

    Article  Google Scholar 

  11. K. Jordan, M. Sekimoto, Effects of adding glycerol and sucrose to ferrous xylenol orange hydrogel. J. Phys. Conf. Ser. 250, 012048 (2010). https://doi.org/10.1088/1742-6596/250/1/012048

    Article  Google Scholar 

  12. S. Gallo, L. Cremonesi, G. Gambarini, L. Ianni, C. Lenardi, S. Argentiere, D. Bettega, M. Gargano, N. Ludwig, I. Veronese, Study of the effect of laponite on Fricke xylenol orange gel dosimeter by optical techniques. Sensor. Actuator. B Chem. 272, 618–625 (2018)

    Article  ADS  Google Scholar 

  13. S. Gallo, E. Artus, M.G. Brambilla, G. Gambarini, C. Lenardi, A. Monti, A. Torresin, E. Pignoli, I. Veronese, Characterization of radiochromic PVA-GTA Fricke gels for dosimetry in X-rays external radiation therapy. J. Phys. D Appl. Phys. 52, 225601 (2019)

    Article  ADS  Google Scholar 

  14. S. Babu, S. Peace, K. Rafic, E. Raj, S. Christopher, P. Ravindran, Escalation of optical transmittance and determination of diffusion coefficient in low Bloom strength gelatin-based Fricke gel dosimeters. Radiat. Phys. Chem. 156, 300–306 (2019)

    Article  ADS  Google Scholar 

  15. K. Penev, K. Mequanint, Controlling sensitivity and stability of ferrous–xylenol orange–gelatin 3D gel dosimeters by do** with phenanthroline-type ligands and glyoxal. Phys. Med. Biol. 58, 1823–1838 (2013)

    Article  Google Scholar 

  16. Y. Yang, L. Yang, J. Chen, B. Chen, W. Luo, G. Sui, X. Lu, J. Chen, Preparation and characterization of novel sulfosalicylic acid-ferrous-PVA hydrogel as a 3D dosimeter, J Radioanal. Nucl. Chem. 304, 481–487 (2015)

    Article  Google Scholar 

  17. H.-W. Sung, D.-M. Huang, W.-H. Chang, R.-N. Huang, J.-C. Hsu, Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study. J. Biomed. Mater. Res. 46(4), 520–530 (1999). https://doi.org/10.1002/(sici)1097-4636(19990915)46:4%3c520::aid-jbm10%3e3.0.co;2-9

    Article  Google Scholar 

  18. P. Davis, B.E. Tabor, Kinetic study of the crosslinking of gelatin by formaldehyde and glyoxal. J. of Polym. Sci. 1, 799–815 (1963)

    Google Scholar 

  19. H.W. Sun, R.J. Feigal, H.H. Messer, Cytotoxicity of glutaraldehyde and formaldehyde in relation to time of exposure and concentration. Pediatr. Dent. 12, 303–307 (1990). PMID: 2128894

    Google Scholar 

  20. J.F. Pavoni, O. Baffa, An evaluation of dosimetric characteristics of MAGIC gel modified by adding formaldehyde. Radiat. Meas. 47(s 11–12), 1074–1082 (2012)

    Article  Google Scholar 

  21. Y. **ao, S.F. Kry, R. Popple, E. Yorke, N. Papanikolaou, S. Stathakis, P. **a, S. Huq, J. Bayouth, J. Galvin, F.F. Yin, Flattening filter-free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group. J. Appl. Clin. Med. Phys. 16, 12–29 (2015)

    Article  Google Scholar 

  22. S. Babic, J. Battista, K. Jordan, An apparent threshold dose response in ferrous xylenol-orange gel dosimeters when scanned with a yellow light source. Phys. Med. Biol. 53(6), 1637–1650 (2008)

    Article  Google Scholar 

  23. T. Kron, D. Jonas, J.M. Pope, Fast T1 imaging of dual gel samples for diffusion measurements in NMR dosimetry gels. Magn. Reson. Imag. 15, 211–221 (1997)

    Article  Google Scholar 

  24. J. Šolc, V. Spěváček, New radiochromic gel for 3D dosimetry based on Turnbull blue: basic properties. Phys. Med. Biol. 54, 5095–5101 (2009)

    Article  Google Scholar 

  25. F.A. Osorio, E. Bilbao, R. Bustos, F. Alvarez, Effects of concentration, Bloom degree, and pH on gelatin melting and gelling temperatures using small amplitude oscillatory rheology. Int. J. Food Prop. 10(4), 841–851 (2007). https://doi.org/10.1080/10942910601128895

    Article  Google Scholar 

  26. G. Gambarini, I. Veronese, L. Bettinelli, L. Felisi, M. Gargano, N. Ludwig, C. Lenardi, M. Carrara, G. Collura, S. Gallo et al., Study of optical absorbance and MR relaxation of Fricke xylenol orange gel dosimeters. Radiat. Meas. 106, 622–627 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We also acknowledge L. Rocha and C. Brunello for technical assistance and Hospital das Clinicas da Faculdade de Medicina de Ribeirão Preto, SP, Brazil, and Hospital do Amor, Barretos, SP, Brazil, for the use of their irradiation facilities. The help of the medical physicists G. Pavan and L. Borges of these institutions is greatly appreciated.

Funding

This work was supported by grants 2014/03370–6 and 2013/07699–0, São Paulo Research Foundation (FAPESP); CNPq Grant 304107/2019–0; and CAPES—Finance Code 001 for partial financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.A.d.S., J.F.P. and O.B.; Methodology, M.A.d.S., J.F.P., k.J. and O.B.; Software, M.A.d.S.; Validation, M.A.d.S., J.F.P., k.J. and O.B.; Formal analysis, M.A.d.S.; Investigation, M.A.d.S., J.F.P., k.J. and O.B.; Resources, M.A.d.S., J.F.P. and O.B.; Data curation, M.A.d.S.anf K.J.; Writing—original draft preparation, M.A.d.S.; Writing—review and editing, M.A.d.S., J.F.P., k.J. and O.B.; Visualization, K.J.; Supervision, J.F.P., k.J. and O.B.; Project administration, J.F.P., and O.B.; Funding acquisition, J.F.P. and O.B.

Corresponding author

Correspondence to Matheus Antonio da Silveira.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silveira, M.A., Pavoni, J.F., Jordan, K. et al. Characterization of Radiochromic Hydrogel Dosimeter-Ferrous Xylenol Orange Enhanced to Have a Higher Melting Point. Braz J Phys 54, 168 (2024). https://doi.org/10.1007/s13538-024-01521-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01521-y

Keywords

Navigation