Log in

High-Frequency Electrostatic Cnoidal Waves in Unmagnetized Plasma

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, the propagation of high frequency electrostatic electron-acoustic cnoidal waves (EACWs) is investigated in an unmagnetized homogenous plasma consisting of inertial cold electrons and inertialess Maxwellian hot electrons with stationary ions in the background. The fluid theory with the method of the reductive perturbation is applied for deriving the evolution equations (including Korteweg-de Vries (KdV)-type equation and Kawahara equation). The cnoidal wave (CW) solutions to the evolution equations are determined. The effect of the physical plasma parameter, namely, the density ratio of hot to cold electrons on the characteristic features of EACWs, is examined. In the limiting case, the CW solutions can be reduced to the soliton solutions. The comparison between the CW profile for the KdV-type equation and Kawahara equation is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors declare that all data supporting the present study are available within the article.

References

  1. T.H. Stix, Waves in Plasma (New York: AIP 1992)

  2. R.L. Tokar, S.P. Gary, Geophys. Res. Lett. 11, 1180 (1984)

  3. M. Ghosh, K. Sharry, D. Dutta, S. Chandra, Afr. Rev. Phys. 15, 63 (2021)

    Google Scholar 

  4. M. Khalid, A. Rahman, F. Hadi, A. Zeb, Pramana. J. Phys. 92, 86 (2019)

    Google Scholar 

  5. S. Chandra, S. Kapoor, D. Nandi, C. Das, D. Bhattacharjee, IEEE Trans. Plasma Sci. 50(6), 1495–1507 (2022)

    Article  ADS  Google Scholar 

  6. A. Rahman, M. Khalid, A. Zeb, Braz. J. Phys. 49, 726 (2019)

    Article  ADS  Google Scholar 

  7. J. Goswami, S. Chandra, J. Sarkar, B. Ghosh, Radiat. Eff. Defects Solids 175(9–10), 961–973 (2020)

    Article  ADS  Google Scholar 

  8. M. Khalid, M. Khan, Muddusir, M. Irshad, Z. Naturforsch. A 76, 891 (2021)

  9. S. Ghosh, S. Saha, T. Chakraborty, K. Sadhukhan, R. Bhanja, S. Chandra, Afr. Rev. Phys. 15, 90 (2021)

    Google Scholar 

  10. M. Khalid, M. Khan, A. Rahman, F. Hadi, Indian J. Phys. 96, 1783–1790 (2022)

    Article  ADS  Google Scholar 

  11. C. Das, P. Ghosh, S. Chandra, V. Raj, IEEE Trans. Plasma Sci. 50(6), 1598 (2022)

    Article  ADS  Google Scholar 

  12. M. Khalid, G. Ullah, M. Khan, S. Ahmad, S. Nabi, D. Khan, Plasma Sci. Technol. 23, 035301 (2021)

    Article  ADS  Google Scholar 

  13. S. Chandra, J. Goswami, J. Sarkar, Indian J. Phys. 96, 3413–3427 (2022)

    Article  ADS  Google Scholar 

  14. M. Khalid, M. Khan, A. Rahman and M. Irshad, Z. Naturforsch. A 77, 125 (2022)

  15. M. Khalid, M. Khan, A. Rahman, A. Kabir, M. Irshad, Braz. J. Phys. 52, 109 (2022)

    Article  ADS  Google Scholar 

  16. S. Shilpi, C. Das, S. Chandra, Study of quantum-electron acoustic solitary structures in fermi plasma with two temperature electrons, in Nonlinear dynamics and applications, proceedings of the ICNDA 2022. ed. by S. Banerjee, A. Saha (2022). https://doi.org/10.1007/978-3-030-99792-2

    Chapter  Google Scholar 

  17. M. Khalid, F. Hadi, A. Rahman, J. Phys. Soc. Jpn. 88, 114501 (2019)

    Article  ADS  Google Scholar 

  18. J. Sarkar, S. Chandra, A. Dey, C. Das, A. Marick, P. Chatterjee, IEEE Trans. Plasma Sci. 50(6), 1565–1578 (2022)

    Article  ADS  Google Scholar 

  19. A. Rahman, M. Khalid, S.N. Naeem, E.A. Elghmaz, S.A. El-Tantawy, L.S. El-Sherif, Phys. Lett. A 384, 126257 (2020)

    Article  Google Scholar 

  20. C. Das, S. Chandra, B. Ghosh, Pramana. J. Phys. 95(2), 78 (2021)

    Google Scholar 

  21. S. Thakur, C. Das, S. Chandra, IEEE Trans. Plasma Sci. 50(6), 1545–1556 (2022)

    Article  ADS  Google Scholar 

  22. Sharry, D Dutta, M Ghosh, S Chandra, IEEE Trans. Plasma Sci. 50(6), 1585 (2022)

  23. S. Singla, S. Chandra, N.S. Saini, Chin. J. Phys. 85, 524–533 (2023). https://doi.org/10.1016/j.cjph.2023.06.014

    Article  Google Scholar 

  24. K. Watanabe, T. Taniuti, J. Phys. Soc. Japan 43, 1819 (1977)

    Article  ADS  Google Scholar 

  25. A. Denehkar, N.S. Saini, M.A. Hellberg, I. Kourakis, AIP Conf. Proc. 1397, 305–306 (2011)

  26. S. Ikezawa, Y. Nakamura, J. Phys. Soc. Japan 50, 962–967 (1981)

    Article  ADS  Google Scholar 

  27. S. Chowdhury, S. Biswas, N. Chakrabarti, R. Pal, Phys. Plasmas 24, 062111 (2017)

    Article  ADS  Google Scholar 

  28. M.A. Hellberg, R.L. Mace, R.J. Armstrong, G. Karlstad, J. Plasma Phys. 64, 433 (2000)

    Article  ADS  Google Scholar 

  29. A.A. Kabanstev, F. Valentini, C.F. Driscoll, AIP Conf. Proc. 862(1) (2006)

  30. D.S. Montgomery, R.J. Focia, H.A. Rose, D.A. Russel, J.A. Cobble, J.C. Fernandez, R.P. Johnson, Phys. Rev. Lett. 87, 155001 (2001)

    Article  ADS  Google Scholar 

  31. N.J. Sircombe, T.D. Arber, R.O. Dendy, Plasma Phys. Control. Fusion 48, 1141 (2006)

    Article  ADS  Google Scholar 

  32. M. Khalid, F. Hadi, A. Rahman, Eur. Phys. J. Plus 136, 1061 (2021)

    Article  Google Scholar 

  33. M. Khalid, Europhys. Lett. 138, 53003 (2022)

    Article  ADS  Google Scholar 

  34. M. Khalid, S.A. El-Tantawy, A. Rahman, Astrophy. Space Sci. 365, 75 (2020)

    Article  ADS  Google Scholar 

  35. S.N. Naeem, A. Qamar, M. Khalid, A. Rahman, Eur. Phys. J. Plus 136, 1205 (2021)

    Article  Google Scholar 

  36. M. Irshad, M. Khalid, A. Rahman, Eur. Phys. J. Plus 137, 893 (2022)

    Article  Google Scholar 

  37. B. Sahu, Phys. Plasma 17, 122305 (2010)

    Article  ADS  Google Scholar 

  38. T. Kawahara, J. Phys. Soc. Jpn. 33(1), 260–264 (1972)

    Article  ADS  Google Scholar 

  39. A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory (Higher Education Press, Bei**g, USA, 2009)

    Book  Google Scholar 

  40. A.M. Wazwaz, Partial Differential Equations: Methods and Applications Lisse: Balkema, cop. (2002)

  41. A.M. Wazwaz, Appl. Math. Comput. 1(45), 133 (2003)

    Google Scholar 

  42. M. Khalid, A. Rahman, Astrophy. Space Sci. 364, 28 (2019)

    Article  ADS  Google Scholar 

  43. S.C. Mancas, Differential Equations and Dynamical Systems 27, 19 (2019)

    Article  MathSciNet  Google Scholar 

  44. S.A. Alkhateeb, S. Hussain, W. Albalawi, S.A. El-Tantawy, E.I. El-Awady, J. Taibah Univ. Sci. 17, 2187606 (2023)

    Article  Google Scholar 

  45. H.A. Alyousef, A.H. Salas, M.R. Alharthi, S.A. El-Tantawy, Complexity 2022, 9942267 (2022)

  46. R.A. Alharbey, W.R. Alrefae, H. Malaikah, E. Tag-Eldin, S.A. El-Tantawy, Symmetry 15, 97 (2023)

    Article  ADS  Google Scholar 

  47. S.M.E. Ismaeel, A.-M. Wazwaz, E. Tag-Eldin, S.A. El-Tantawy, Symmetry 15, 57 (2023)

  48. N.F. Aljahdaly, S.A. El-Tantawy, A.-M. Wazwaz, H.A. Ashi, Rom. Rep. Phys. 74, 102 (2022)

    Google Scholar 

  49. N.F. Aljahdaly, S.A. El-Tantawy, J. Ocean Eng. Sci. 7, 492 (2021)

    Article  Google Scholar 

  50. S.A. El-Tantawy, A.H. Salas, M.R. Alharthi, Phys. Fluids 33, 106101 (2021)

  51. S.A. El-Tantawy, A.H. Salas, H.A. Alyousef, M.R. Alharthi, Chin. J. Phys. 77, 2454 (2022)

  52. S.A. El-Tantawy, A.H. Salas, M.R. Alharthi, Chaos Solit. Frac. 147, 110965 (2021)

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R32), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Khalid.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, M., Ata-ur-Rahman, Minhas, R. et al. High-Frequency Electrostatic Cnoidal Waves in Unmagnetized Plasma. Braz J Phys 54, 20 (2024). https://doi.org/10.1007/s13538-023-01369-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01369-8

Keywords

Navigation