Log in

On the Truncation of Series for the Electrical Current Flow in Rectangular Conducting Sheets

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

This study deals with the simplification and the applicability of the van der Pauw method. The convergence analysis of the infinite series of sums that describe the electrical current flow in a rectangular sheet and its closed form based upon q-Pochhammer symbols are presented. Results from finite-element simulations show that the first term of the infinite series of sums is accurate enough for the experimental determination of the electrical resistivity in thin films, semiconductors, and low-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. D.W. Koon, Effect of contact size and placement, and of resistive inhomogeneities on van der Pauw measurements. Rev. Sci. Instrum. 60(2), 271–274 (1989). https://doi.org/10.1063/1.1140422

    Article  ADS  Google Scholar 

  2. J. Náhlík, I. Kašpárková, P. Fitl, Study of quantitative influence of sample defects on measurements of resistivity of thin films using van der Pauw method. Meas. J. Int. Meas. Confed. 44(10), 1968–1979 (2011). https://doi.org/10.1016/j.measurement.2011.08.023

    Article  Google Scholar 

  3. K. Szymański, P. Zaleski, Precise measurement of inhomogeneity of 2-D system by six-point method. IEEE Trans. Instrum. Meas. 66(6), 1243–1247 (2017). https://doi.org/10.1109/TIM.2017.2648948

    Article  Google Scholar 

  4. C. Kasl, M.J.R. Hoch, Effects of sample thickness on the van der Pauw technique for resistivity measurements. Rev. Sci. Instrum. 76(3), 1–5 (2005). https://doi.org/10.1063/1.1866232

    Article  Google Scholar 

  5. L.J. van der Pauw, A method of measuring the resistivity and hall coefficient on lamellae of arbitrary shape. Philips Res. Rep. 20, 220–224 (1958)

    Google Scholar 

  6. L.J. van der Pauw, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 13(1), 1–9 (1958)

    Google Scholar 

  7. I. Miccoli, F. Edler, H. Pfnür, C. Tegenkamp, The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. J. Phys. Condens. Matter. 27(22), (2015). https://doi.org/10.1088/0953-8984/27/22/223201

  8. A.A. Ramadan, R.D. Gould, A. Ashour, On the Van der Pauw method of resistivity measurements. Thin Solid Films. 239(2), 272–275 (1994). https://doi.org/10.1016/0040-6090(94)90863-X

    Article  ADS  Google Scholar 

  9. H. Li, Y. Sun, W. Wang, H. Hutchinson, Neurocomputing van der Pauw function for the measurement of a semiconductor’s resistivity without use of the learning rate of weight vector regulation. J. Semicond. 32(12), 1–8 (2011). https://doi.org/10.1088/1674-4926/32/12/122002

    Article  Google Scholar 

  10. J.L. Cieśliński, Modified van der Pauw method based on formulas solvable by the Banach fixed point method. Thin Solid Films. 522, 314–317 (2012). https://doi.org/10.1016/j.tsf.2012.09.018

    Article  ADS  Google Scholar 

  11. W.K. Chan, On the calculation of the geometric factor in a van der Pauw sheet resistance measurement. Rev. Sci. Instrum. 71(10), 3964–3965 (2000). https://doi.org/10.1063/1.1290496

    Article  ADS  Google Scholar 

  12. S. Hurand, T. Chommaux, P.-O. Renault, T. Girardeau, F. Paumier, Easy and computer-time-saving implementation of the van der Pauw method including anisotropy and probe positioning correction factors using approximate closed-form analytical functions. Rev. Sci. Instrum. 93(5), 053907 (2022). https://doi.org/10.1063/5.0068682

    Article  ADS  Google Scholar 

  13. M. Reveil, V.C. Sorg, E.R. Cheng, T. Ezzyat, P. Clancy, M.O. Thompson, Finite element and analytical solutions for van der Pauw and four-point probe correction factors when multiple non-ideal measurement conditions coexist. Rev. Sci. Instrum. 88(9), (2017). https://doi.org/10.1063/1.5001830

  14. C.A.M. dos Santos et al., Procedure for measuring electrical resistivity of anisotropic materials: a revision of the Montgomery method. J. Appl. Phys. 110(80), (2011). https://doi.org/10.1063/1.3652905

  15. J.D. Wasscher, Note on four-point resistivity measurements on anisotropic conductors. Philips Res. Rep. 16, 301–306 (1961)

    Google Scholar 

  16. H.C. Montgomery, Method for measuring electrical resistivity of anisotropic materials. J. Appl. Phys. 42(7), 2971–2975 (1971). https://doi.org/10.1063/1.1660656

    Article  ADS  Google Scholar 

  17. F.S. Oliveira, R.B. Cipriano, F.T. da Silva, E.C. Romão, C.A.M. dos Santos, Simple analytical method for determining electrical resistivity and sheet resistance using the van der Pauw procedure. Sci. Rep. 10(1), 1–8 (2020). https://doi.org/10.1038/s41598-020-72097-1

    Article  Google Scholar 

  18. B.F. Logan, S.O. Rice, R.F. Wick, Series for computing current flow in a rectangular block. J. Appl. Phys. 42(7), 2975–2980 (1971). https://doi.org/10.1063/1.1660657

    Article  ADS  Google Scholar 

  19. IEEE Computer Society, IEEE standard for binary floating-point arithmetic. ANSI/IEEE Std. 754–1985, 1–20 (1985)

    Google Scholar 

  20. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and series, vol. 1 (1986)

  21. I.J. Zucker, Some infinite series of exponential and hyperbolic fucntions. SIAM J. Math. Anal. 15(2), 430 (1984). https://doi.org/10.2307/2031953

    Article  Google Scholar 

  22. See for instance the documentation for q-Pochhammer symbols packages available in Wolfram Mathematica: https://reference.wolfram.com/language/ref/QPochhammer.html

  23. F.S. Oliveira, L.G. Guimarães, C.A.M. dos Santos, B.S. de Lima, M.S. da Luz, Electrical and thermodynamic study of SrTiO3 reduction using the van der Pauw method. Mater. Chem. Phys. 263(May), 2021 (2020). https://doi.org/10.1016/j.matchemphys.2021.124428

    Article  Google Scholar 

  24. C. Multiphysics, The COMSOL Multiphysics Reference Manual. Manual, pp. 1–1336, 2015, [Online]. Available: http://www.comsol.com/blogs

  25. R. Chwang, B.J. Smith, C.R. Crowell, Contact size effects on the van der Pauw method for resistivity and Hall coefficient measurement. Solid State Electron. 17(12), 1217–1227 (1974). https://doi.org/10.1016/0038-1101(74)90001-X

    Article  ADS  Google Scholar 

  26. S.H.N. Lim, D.R. McKenzie, M.M.M. Bilek, Van der Pauw method for measuring resistivity of a plane sample with distant boundaries. Rev. Sci. Instrum. 80(70), (2009). https://doi.org/10.1063/1.3183503

  27. O. Bierwagen, R. Pomraenke, S. Eilers, W.T. Masselink, Mobility and carrier density in materials with anisotropic conductivity revealed by van der Pauw measurements. Phys. Rev. B - Condens. Matter Mater. Phys. 70(16), 1–6 (2004). https://doi.org/10.1103/PhysRevB.70.165307

    Article  Google Scholar 

  28. O. Bierwagen, Z. Galazka, The inherent transport anisotropy of rutile tin dioxide (SnO2) determined by van der Pauw measurements and its consequences for applications. Appl. Phys. Lett. 112(9), 5 (2018). https://doi.org/10.1063/1.5018983

    Article  Google Scholar 

  29. G. González-Díaz et al., A robust method to determine the contact resistance using the van der Pauw set up. Meas. J. Int. Meas. Confed. 98, 151–158 (2017). https://doi.org/10.1016/j.measurement.2016.11.040

    Article  Google Scholar 

  30. D.K. de Vries, A.D. Wieck, Potential distribution in the van der Pauw technique. Am. J. Phys. 63(12), 1074–1078 (1995). https://doi.org/10.1119/1.18013

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financed in part by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (No. (2021/03298-7). F.S. Oliveira thanks E. C. Romão for the COMSOL program and C. A. M. dos Santos for the helpful and motivating discussions. The author also thanks the contributions from the reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Souza Oliveira.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, F.S. On the Truncation of Series for the Electrical Current Flow in Rectangular Conducting Sheets. Braz J Phys 52, 206 (2022). https://doi.org/10.1007/s13538-022-01211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01211-7

Keywords

Navigation