Log in

A Voyage from Plasmonic to Hybrid Waveguide Refractive Index Sensors Based on Wavelength Interrogation Technique: a Review

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

This study describes the underpinning theories and principles in the field of surface plasmon polariton generation and waveguide construction, as well as many design structures based on these waveguides that generate diverse optical resonances and their use for sensing refractive index and temperature variation. Firstly, the investigation of the topologies of plasmonics refractive index sensors based on Bragg grating structures and resonators (cavity and ring) that are coupled to the main bus waveguide is done. Secondly, these architectures’ theories and analytical frameworks are summarized. Following that, contemporary sensor development trends based on metal–insulator–metal–resonators (ring or cavity) architecture have been discussed. They have also been compared in terms of performance measures like sensitivity and figure of merit. The results of the comparison demonstrated that sensitivity can be greatly improved, but the figure of merit and quality factor still need to be improved in plasmonic-based sensors. Finally, some recent instances of hybrid plasmonic waveguides connected to a ring resonator have been manifested, which significantly improve the figure of merit and quality factor as compared to plasmonic waveguide–based sensors. Moreover, such structures are easily fabricated due to their CMOS compatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795–808 (2010). https://doi.org/10.1002/lpor.200900055

    Article  ADS  Google Scholar 

  2. Y. Chen, H. Ming, Review of surface plasmon resonance and localized surface plasmon resonance sensor? Photonic Sensors 2(1), 37–49 (2012). https://doi.org/10.1007/s13320-011-0051-2

    Article  ADS  Google Scholar 

  3. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003). https://doi.org/10.1038/nature01937

    Article  ADS  Google Scholar 

  4. S.E. Swiontek, D.P. Pulsifer, A. Lakhtakia, Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform. Sci. Rep. 3(1), 1–6 (2013). https://doi.org/10.1038/srep01409

    Article  Google Scholar 

  5. Y. Fang, M. Sun, Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl. 4(6), e294–e294 (2015). https://doi.org/10.1038/lsa.2015.67

    Article  ADS  Google Scholar 

  6. P.K. Skorobogatov, Laser imitation simulation behind the diffraction limit. Russ. Microelectron. 43(2), 125–132 (2014). https://doi.org/10.1134/S1063739714020097

    Article  MathSciNet  Google Scholar 

  7. X. Luo, L. Yan, Surface plasmon polaritons and its applications. IEEE Photonics J. 4(2), 590–595 (2012). https://doi.org/10.1109/JPHOT.2012.2189436

    Article  ADS  Google Scholar 

  8. J. Zhang, L. Zhang, W. Xu, Surface plasmon polaritons: physics and applications. J. Phys. D. Appl. Phys45(11), (2012). https://doi.org/10.1088/0022-3727/45/11/113001.

  9. S.H. Abdulnabi, All-optical logic gates based on nanoring insulator–metal–insulator plasmonic waveguides at optical communications band. J. Nanophotonics 13(01), 1 (2019). https://doi.org/10.1117/1.jnp.13.016009

    Article  Google Scholar 

  10. J.S. Costa et al., Limits of the effective medium theory in particle amplified surface plasmon resonance spectroscopy biosensors. Sensors (Switzerland) 19(3), 1–17 (2019). https://doi.org/10.3390/s19030584

    Article  Google Scholar 

  11. M.-S. Kwon, Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Opt. Express 19(9), 8379 (2011). https://doi.org/10.1364/oe.19.008379

    Article  ADS  Google Scholar 

  12. Q. Zaman et al., Dielectric-loaded waveguides as advanced platforms for diagnostics and application of transparent thin films. Langmuir 37(11), 3248–3260 (2021). https://doi.org/10.1021/acs.langmuir.0c02862

    Article  Google Scholar 

  13. R. El Haffar, A. Farkhsi, and O. Mahboub, Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator. Appl. Phys. A Mater. Sci. Process. 126(7), (2020). https://doi.org/10.1007/s00339-020-03660-w.

  14. Y. ** Zhou, X. X. Yang, and T. Jun Cui, A multidirectional frequency splitter with band-stop plasmonic filters. J. Appl. Phys. 115(12), 11–16 2014. https://doi.org/10.1063/1.4870135.

  15. Y. Guo et al., A plasmonic splitter based on slot cavity. Opt. Express 19(15), 13831 (2011). https://doi.org/10.1364/oe.19.013831

    Article  ADS  Google Scholar 

  16. Z. Zhang, F. Shi, Y. Chen, Tunable multichannel plasmonic filter based on coupling-induced mode splitting. Plasmonics 10(1), 139–144 (2015). https://doi.org/10.1007/s11468-014-9787-z

    Article  Google Scholar 

  17. X.-S. Lin, X.-G. Huang, Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33(23), 2874 (2008). https://doi.org/10.1364/ol.33.002874

    Article  ADS  Google Scholar 

  18. J. Tao, X.G. Huang, X. Lin, Q. Zhang, X. **, A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure. Opt. Express 17(16), 13989 (2009). https://doi.org/10.1364/oe.17.013989

    Article  ADS  Google Scholar 

  19. J. Xu, L. Chen, X. Zang, B. Cai, Y. Peng, Y. Zhu, Triple-channel terahertz filter based on mode coupling of cavities resonance system. Appl. Phys. Lett. 103(16), 2–6 (2013). https://doi.org/10.1063/1.4826456

    Article  Google Scholar 

  20. D. Chauhan, A. Kumar, R. Adhikari, R. K. Saini, S. H. Chang, and R. P. Dwivedi, High performance vanadium dioxide based active nano plasmonic filter and switch, Optik (Stuttg) 225, 165672 (2021). https://doi.org/10.1016/j.ijleo.2020.165672.

  21. Y. Kou, X. Chen, Multimode interference demultiplexers and splitters in metal-insulator-metal waveguides. Opt. Express 19(7), 6042 (2011). https://doi.org/10.1364/oe.19.006042

    Article  ADS  Google Scholar 

  22. H. Lu, X. Liu, Y. Gong, D. Mao, G. Wang, Analysis of nanoplasmonic wavelength demultiplexing based on metal-insulator-metal waveguides. J. Opt. Soc. Am. B 28(7), 1616 (2011). https://doi.org/10.1364/josab.28.001616

    Article  ADS  Google Scholar 

  23. K. Wen, L. Yan, W. Pan, B. Luo, Z. Guo, and Y. Guo, Wavelength demultiplexing structure based on a plasmonic metal-insulator-metal waveguide. J. Opt. (United Kingdom) 14(7), (2012). https://doi.org/10.1088/2040-8978/14/7/075001.

  24. M. Bahadori, A. Eshaghian, H. Hodaei, M. Rezaei, K. Mehrany, Analysis and design of optical demultiplexer based on arrayed plasmonic slot cavities: transmission line model. IEEE Photonics Technol. Lett. 25(8), 784–786 (2013). https://doi.org/10.1109/LPT.2013.2250951

    Article  ADS  Google Scholar 

  25. Z. Chen, R. Hu, L. Cui, L. Yu, L. Wang, J. **ao, Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems. Opt. Commun. 320, 6–11 (2014). https://doi.org/10.1016/j.optcom.2013.12.079

    Article  ADS  Google Scholar 

  26. R.A. Wahsheh, Z. Lu, M.A.G. Abushagur, Nanoplasmonic couplers and splitters. Opt. Express 17(21), 19033 (2009). https://doi.org/10.1364/oe.17.019033

  27. A. R. Davoyan, Plasmonic couplers with metal nonlinearities. Phys. Lett. Sect. A Gen. At. Solid State Phys. 375(14), 1615–1618 2011. https://doi.org/10.1016/j.physleta.2011.03.001.

  28. H.Y. Wu et al., Ultrasmall all-optical plasmonic switch and its application to superresolution imaging. Sci. Rep. 6(April), 1–9 (2016). https://doi.org/10.1038/srep24293

    Article  Google Scholar 

  29. R.P. Dwivedi, H.S. Lee, J.H. Song, S. An, E.H. Lee, Plasmonic modulator utilizing three parallel metal-dielectric-metal waveguide directional coupler and elasto-optic effects. Opt. Commun. 284(5), 1418–1423 (2011). https://doi.org/10.1016/j.optcom.2010.10.038

    Article  ADS  Google Scholar 

  30. V.E. Babicheva et al., Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials. Opt. Express 21(22), 27326 (2013). https://doi.org/10.1364/oe.21.027326

    Article  ADS  Google Scholar 

  31. D. Chauhan, G. T. Mola, and R. P. Dwivedi, An ultra-compact plasmonic modulator/switch using VO2 and elasto-optic effect. Optik (Stuttg) 201, 163531 2020. https://doi.org/10.1016/j.ijleo.2019.163531.

  32. J. Chen, Z. Li, Y. Zou, Z. Deng, J. **ao, Q. Gong, Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8(4), 1627–1631 (2013). https://doi.org/10.1007/s11468-013-9580-4

    Article  Google Scholar 

  33. Zhao, L. Yu, L. Wang, G. Duan, Y. Zhao, and J. **ao, A refractive index nanosensor based on fano resonance in the plasmonic waveguide system. IEEE Photonics Technol. Lett. 27(16), 1695–1698 2015. https://doi.org/10.1109/LPT.2015.2437850.

  34. Y. Zhang et al., Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor. Opt. Commun. 370, 203–208 (2016). https://doi.org/10.1016/j.optcom.2016.03.001

    Article  ADS  Google Scholar 

  35. Y. Tang et al., Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors (Switzerland) 17(4), 2017. https://doi.org/10.3390/s17040784.

  36. N. L. Kazanskiy, S. N. Khonina, and M. A. Butt, Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: a brief review. Phys. E Low-Dimensional Syst. Nanostructures 117, no. July 2019, 113798 2020. https://doi.org/10.1016/j.physe.2019.113798.

  37. I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, H. Suchowski, Plasmonic nanostructure design and characterization via deep learning. Light Sci. Appl. 7(1), 1–8 (2018). https://doi.org/10.1038/s41377-018-0060-7

    Article  Google Scholar 

  38. I.J. Bigio, S.G. Bown, Spectroscopic sensing of cancer and cancer therapy: current status of translational research. Cancer Biol. Ther. 3, 259–267 (2004). https://doi.org/10.4161/cbt.3.3.694

    Article  Google Scholar 

  39. B. A. Prabowo, A. Purwidyantri, and K. C. Liu, Surface plasmon resonance optical sensor: a review on light source technology. Biosensors 8(13), (2018). https://doi.org/10.3390/bios8030080.

  40. E. Fort, Plasmonics. In Optics in Instruments: Applications in Biology and Medicine 179–216 2013

  41. H. Yu, Y. Peng, Y. Yang, Z.Y. Li, Plasmon-enhanced light–matter interactions and applications, npj Comput. Mater. 5(1), 1–14 (2019). https://doi.org/10.1038/s41524-019-0184-1

    Article  Google Scholar 

  42. H. Lu, G.X. Wang, X.M. Liu, Manipulation of light in MIM plasmonic waveguide systems. Chinese Sci. Bull. 58(30), 3607–3616 (2013). https://doi.org/10.1007/s11434-013-5989-6

    Article  ADS  Google Scholar 

  43. S. Mehrabani, A.J. Maker, A.M. Armani, Hybrid integrated label-free chemical and biological sensors. Sensors (Switzerland) 14(4), 5890–5928 (2014). https://doi.org/10.3390/s140405890

    Article  ADS  Google Scholar 

  44. A. P. Michael J. Schöning, Label-free biosensing, advanced materials, devices and applications. August 133–178, (2017). https://doi.org/10.1007/978-3-319-75220-4.

  45. P. Sun, P. Xu, K. Zhu, Z. Zhou, Silicon-based optoelectronics enhanced by hybrid plasmon polaritons: bridging dielectric photonics and nanoplasmonics. Photonics 8(11), (2021). https://doi.org/10.3390/photonics8110482.

  46. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, Theoretical analysis of hybrid plasmonic waveguide. IEEE J. Sel. Top. Quantum Electron. 19(3), 2013, https://doi.org/10.1109/JSTQE.2013.2238894.

  47. X. He et al., Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement. Opt. Express 26(8), 10109 (2018). https://doi.org/10.1364/oe.26.010109

    Article  ADS  Google Scholar 

  48. D. Chelladurai, M. Doderer, U. Koch, Y. Fedoryshyn, C. Haffner, J. Leuthold, Low-loss hybrid plasmonic coupler. Opt. Express 27(8), 11862 (2019). https://doi.org/10.1364/oe.27.011862

    Article  ADS  Google Scholar 

  49. F. Yesilkoy, Optical interrogation techniques for nanophotonic biochemical sensors, Sensors (Switzerland) 19(19), 2019, https://doi.org/10.3390/s19194287.

  50. L. **, M. Li, J. He, S. Member, Analysis of wavelength and intensity interrogation methods in cascaded double-ring sensors. J. Light. Technol. 30(12), 1994–2002 (2012)

    Article  ADS  Google Scholar 

  51. G. Wang, H. Lu, X. Liu, Y. Gong, L. Wang, Optical bistability in metal-insulator-metal plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium. Appl. Opt. 50(27), 5287–5290 (2011). https://doi.org/10.1364/AO.50.005287

    Article  ADS  Google Scholar 

  52. P. Sharma and V. Dinesh Kumar, Hybrid insulator metal insulator planar plasmonic waveguide-based components. IEEE Photonics Technol. Lett. 29(16), 1360–1363. 2017. https://doi.org/10.1109/LPT.2017.2722827.

  53. R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2(8), 496–500 (2008). https://doi.org/10.1038/nphoton.2008.131

    Article  Google Scholar 

  54. D. Dai, S. He, A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement 17(19), 496–500 (2009)

    Google Scholar 

  55. J.T. Kim, CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration 23(4), 206–208 (2011)

    Google Scholar 

  56. E.H.P. Waveguides, Y. Bian, Z. Zheng, Y. Liu, J. Zhu, T. Zhou, Coplanar plasmonic nanolasers based on edge-coupled hubrid plasmonic waveguides. IEEE PHOTONICS Technol. Lett. 23(13), 884–886 (2011)

    Article  ADS  Google Scholar 

  57. H. Lv, Y. Liu, Z. Yu, C. Ye, and J. Wang, Hybrid plasmonic waveguides for low-threshold nanolaser applications. CHINESE Opt. Lett. 12(11), 112401–1–112401–4 2014. https://doi.org/10.3788/COL201412.112401.Since.

  58. Z. Wu, R.L. Nelson, J.W. Haus, Q. Zhan, Plasmonic electro-optic modulator design using a resonant metal grating 33(6), 551–553 (2008)

    Google Scholar 

  59. X. Zhang, Fluorescence spectroscopy. 1–19, 2017. https://doi.org/10.3390/s17122719.

  60. M. F. O. Hameed, S. Member, A. S. Saadeldin, E. M. A. Elkaramany, S. S. A. Obayya, and S. Member, Label-free highly sensitive hybrid plasmonic biosensor for the detection of DNA hybridization. 8724(c), pp. 1–8 2017. https://doi.org/10.1109/JLT.2017.2733720.

  61. J.S. Aitchison, M.Z. Alam, X. Sun, M. Mojahedi, Hybrid plasmonic waveguides for on-chip polarization control. Front. Opt. FIO 2012, 2021 (2012). https://doi.org/10.1364/fio.2012.fth3a.1

    Article  Google Scholar 

  62. L. Luo, C. **e, X. Wang, Y. Yu, Surface plasmon resonance enhanced highly ef fi cient planar silicon solar cell. Nano Energy 9, 112–120 (2014). https://doi.org/10.1016/j.nanoen.2014.07.003

    Article  Google Scholar 

  63. J. Gosciniak and S. I. Bozhevolnyi, Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides, pp. 3–10, 2013, https://doi.org/10.1038/srep01803.

  64. M. A. Butt, N. L. Kazanskiy, and S. N. Khonina, Hybrid plasmonic waveguide race-track μ-ring resonator: analysis of dielectric and hybrid mode for refractive index sensing applications. Laser Phys. 30(1), ab5719 2020. https://doi.org/10.1088/1555-6611/ab5719.

  65. M. Rahmatiyar, M. Afsahi, M. Danaie, Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects. Plasmonics 15(6), 2169–2176 (2020). https://doi.org/10.1007/s11468-020-01238-z

    Article  Google Scholar 

  66. T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, H. Ye, The sensing characteristics of plasmonic waveguide with a ring resonator. Opt. Express 22(7), 7669 (2014). https://doi.org/10.1364/oe.22.007669

    Article  ADS  Google Scholar 

  67. N.L. Kazanskiy, S.N. Khonina, M.A. Butt, Plasmonic sensors based onmetal-insulator-metal waveguides for refractive index sensing applications : a brief review. Phys. E Low-dimensional Syst. Nanostructures (2019). https://doi.org/10.1016/j.physe.2019.113798

    Article  Google Scholar 

  68. M.A. Butt, S.N. Khonina, N.L. Kazanskiy, Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J. Mod. Opt. 66(9), 1038–1043 (2019). https://doi.org/10.1080/09500340.2019.1601272

    Article  ADS  Google Scholar 

  69. R. Prakash Dwivedi and E. H. Lee, A compact plasmonic tunable filter using elasto-optic effects, Opt. Laser Technol., vol. 44, no. 7, pp. 2130–2134, 2012, https://doi.org/10.1016/j.optlastec.2012.03.014.

  70. M.R. Rakhshani, M.A. Mansouri-Birjandi, High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sensors Actuators, B Chem. 249, 168–176 (2017). https://doi.org/10.1016/j.snb.2017.04.064

    Article  Google Scholar 

  71. M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range. Optik (Stuttg) 202(July 2019), 163655, 2020. https://doi.org/10.1016/j.ijleo.2019.163655.

  72. M. A. Butt, Plasmonic refractive index sensor based on M-I-M square ring resonator. 2018 Int. Conf. Comput. Electron. Electr. Eng. (ICE Cube), pp. 1–4, 2018.

  73. Y. Huang, C. Min, P. Dastmalchi, G. Veronis, Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. Opt. Express 23(11), 14922 (2015). https://doi.org/10.1364/oe.23.014922

    Article  ADS  Google Scholar 

  74. Y.-F. Chou Chau, Mid-infrared sensing properties of a plasmonic metal–insulator–metal waveguide with a single stub including defects. J. Phys. D. Appl. Phys. 53(11), 115401. 2020.

  75. D. I. C. S. Kigin and M. A. L. Ester, Refraction index sensor based on phase resonances in a subwavelength structure with double period. 55(28), 2016.

  76. Y. Chen, Y. Xu, and J. Cao, Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results Phys. 149, 102420, 2019. https://doi.org/10.1016/j.rinp.2019.102420.

  77. X. Yang, E. Hua, M. Wang, Y. Wang, F. Wen, and S. Yan, Fano resonance in a mim waveguide with two triangle stubs coupled with a split-ring nanocavity for sensing application. Sensors (Switzerland) 19(22), 2019. https://doi.org/10.3390/s19224972.

  78. R. Zafar, M. Salim, Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sens. J. 15(11), 6313–6317 (2015). https://doi.org/10.1109/JSEN.2015.2455534

    Article  ADS  Google Scholar 

  79. P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, Surface plasmon interferometer in silicon-on-insulator: novel concept for an integrated biosensor. Opt. Express 15(21), 13651 (2007). https://doi.org/10.1364/oe.15.013651

    Article  ADS  Google Scholar 

  80. J. Leuermann et al., Optimizing the limit of detection of waveguide-based interferometric biosensor devices. Sensors (Switzerland) 19(17), 1–13 (2019). https://doi.org/10.3390/s19173671

    Article  Google Scholar 

  81. J. Costa, A. Fantoni, P. Lourenço, and M. Vieira, Simulation of a parallel waveguide array structure suitable for interrogation scheme in a plasmonic biosensor. no. March 2020, p. 83, 2020. https://doi.org/10.1117/12.2546178.

  82. B.H. Lee et al., Interferometric fiber optic sensors. Sensors 12(3), 2467–2486 (2012). https://doi.org/10.3390/s120302467

    Article  ADS  Google Scholar 

  83. J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008). https://doi.org/10.1021/cr068107d

    Article  Google Scholar 

  84. S. Luo, B. Li, D. **ong, D. Zuo, X. Wang, A high performance plasmonic sensor based on metal-insulator-metal waveguide coupled with a double-cavity structure. Plasmonics 12(2), 223–227 (2017). https://doi.org/10.1007/s11468-016-0253-y

    Article  Google Scholar 

  85. Z. Zhang et al., Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors (Switzerland) 18(1), 2018. https://doi.org/10.3390/s18010116.

  86. R. Adhikari, D. Chauhan, G.T. Mola, R.P. Dwivedi, A review of the current state-of-the-art in Fano resonance-based plasmonic metal-insulator-metal waveguides for sensing applications. Opto-Electronics Rev. 29(4), 148–166 (2021). https://doi.org/10.24425/opelre.2021.139601

    Article  Google Scholar 

  87. H. Ben, A. Hocini, M.N. Temmar, D. Khedrouche, Design of mid infrared high sensitive metal-insulator-metal plasmonic sensor. Chinese J. Phys. 61(August), 86–97 (2019). https://doi.org/10.1016/j.cjph.2019.07.006

    Article  ADS  Google Scholar 

  88. G.A. López-muñoz et al., A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated micro fluidics for sensitive biodetection. Biosens. Bioelectron. 96(May), 260–267 (2017). https://doi.org/10.1016/j.bios.2017.05.020

    Article  Google Scholar 

  89. M.R. Rakhshani, M.A. Mansouri-Birjandi, Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection. IEEE Trans. Nanotechnol. 17(3), 475–481 (2018). https://doi.org/10.1109/TNANO.2018.2811800

    Article  ADS  Google Scholar 

  90. M.R. Rakhshani, M.A. Mansouri-Birjandi, High-sensitivity plasmonic sensor based on metal-insulator-metal waveguide and hexagonal-ring cavity. IEEE Sens. J. 16(9), 3041–3046 (2016). https://doi.org/10.1109/JSEN.2016.2522560

    Article  ADS  Google Scholar 

  91. M.A. Butt, S.N. Khonina, N.L. Kazanskiy, Metal-insulator-metal nano square ring resonator for gas sensing applications. Waves in Random and Complex Media 31(1), 146–156 (2021). https://doi.org/10.1080/17455030.2019.1568609

    Article  ADS  MathSciNet  Google Scholar 

  92. M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, Plasmonic refractive index sensor based on M-I-M square ring resonator. 2018 Int. Conf. Comput. Electron. Electr. Eng. ICE Cube 2018, January, pp. 1–4, 2019. https://doi.org/10.1109/ICECUBE.2018.8610998.

  93. R. Al Mahmud, M. O. Faruque, and R. H. Sagor, A highly sensitive plasmonic refractive index sensor based on triangular resonator. Opt. Commun483, 126634, 2021. https://doi.org/10.1016/j.optcom.2020.126634.

  94. Z. Guo, K. Wen, Q. Hu, W. Lai, J. Lin, and Y. Fang, Plasmonic multichannel refractive index sensor based on subwavelength tangent-ring metal–insulator–metal waveguide. Sensors (Switzerland) 18(5), 2018. https://doi.org/10.3390/s18051348.

  95. G. Cao, H. Li, Y. Deng, S. Zhan, Z. He, B. Li, Plasmon-induced transparency in a single multimode stub resonator 22(21), 9198–9205 (2014). https://doi.org/10.1364/OE.22.025215

    Article  Google Scholar 

  96. R.D. Kekatpure, E.S. Barnard, W. Cai, M.L. Brongersma, Phase-coupled plasmon-induced transparency 243902(June), 1–4 (2010). https://doi.org/10.1103/PhysRevLett.104.243902

    Article  Google Scholar 

  97. A. Lezama, S. Barreiro, A.M. Akulshin, Electromagnetically induced absorption 59(6), 4732–4735 (1999)

    Google Scholar 

  98. J. Tian, J. Li, Investigation on plasmon induced transparency and its application in an MIM type compound plasmonic waveguide. Prog. Electromagn. Res. C 98(January), 199–212 (2020). https://doi.org/10.2528/pierc19102001

    Article  Google Scholar 

  99. Y. Binfeng, H. Guohua, Z. Ruohu, C. Yi**, Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating. Opt. Express 22(23), 28662 (2014). https://doi.org/10.1364/oe.22.028662

    Article  ADS  Google Scholar 

  100. Y. F. C. Chau, C. T. C. Chao, H. J. Huang, N. T. R. N. Kumara, C. M. Lim, H. P. Chiang, Ultra-high refractive index sensing structure based on a metal-insulator-metal waveguide-coupled T-shape cavity with metal nanorod defects. Nanomaterials (9)10, (2019). https://doi.org/10.3390/nano9101433.

  101. J. Yin, J. Tian, R. Yang, Investigation of the transmission properties of a plasmonic MIM waveguide coupled with two ring resonators. Mater. Res. Express 6(3), 2021 (2019). https://doi.org/10.1088/2053-1591/aaf483

    Article  Google Scholar 

  102. R. Zafar, S. Nawaz, G. Singh, A. D’Alessandro, M. Salim, Plasmonics-based refractive index sensor for detection of hemoglobin concentration. IEEE Sens. J. 18(11), 4372–4377 (2018). https://doi.org/10.1109/JSEN.2018.2826040

    Article  ADS  Google Scholar 

  103. M.R. Rakhshani, M.A. Mansouri-Birjandi, A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection. Photonics Nanostructures - Fundam. Appl. 32, 28–34 (2018). https://doi.org/10.1016/j.photonics.2018.08.002

    Article  ADS  Google Scholar 

  104. X. Li et al., Tunable plasmonically induced reflection in HRR-coupled MIM waveguide structure. Optik (Stuttg). 199(September), 163353 (2019). https://doi.org/10.1016/j.ijleo.2019.163353.

  105. M.A. Butt, N.L. Kazanskiy, S.N. Khonina, Highly sensitive refractive index sensor based on plasmonic bow tie configuration. Photonic Sensors 10(3), 223–232 (2020). https://doi.org/10.1007/s13320-020-0588-z

    Article  ADS  Google Scholar 

  106. N. L. Kazanskiy, M. A. Butt, S. N. Khonina, Nanodots decorated MIM semi-ring resonator cavity for biochemical sensing applications. Photonics Nanostructures - Fundam. Appl. 42(August), 100836 (2020). https://doi.org/10.1016/j.photonics.2020.100836.

  107. S. Zhan et al., Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide. Sci. Rep. 6(March), 1–8 (2016). https://doi.org/10.1038/srep22428

    Article  Google Scholar 

  108. L. Chen et al., Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity. Opt. Express 24(9), 9975 (2016). https://doi.org/10.1364/oe.24.009975

    Article  ADS  Google Scholar 

  109. S. Bin Yan, L. Luo, C. Y. Xue, Z. D. Zhang, A refractive index sensor based on a metal-insulator-metal waveguide-coupled ring resonator. Sensors (Switzerland) 15(11), 29183–29191 (2015). https://doi.org/10.3390/s151129183.

  110. Y.S. Zhou, B.Y. Gu, H.Y. Wang, Band-gap structures of surface-plasmon polaritons in a subwavelength metal slit filled with periodic dielectrics. Phys. Rev. A 81(1), 015801 (2010). https://doi.org/10.1103/PhysRevA.81.015801

    Article  ADS  Google Scholar 

  111. Z.M. Meng, F. Qin, Realizing prominent Fano resonances in metal-insulator-metal plasmonic Bragg gratings side-coupled with plasmonic nanocavities. Plasmonics 13(6), 2329–2336 (2018). https://doi.org/10.1007/s11468-018-0756-9

    Article  Google Scholar 

  112. J. Zhu, G. Wang, Sense high refractive index sensitivity with bragg grating and MIM nanocavity. Results Phys. 102763 (2019). https://doi.org/10.1016/j.rinp.2019.102763.

  113. Y. Binfeng, H. Guohua, Z. Ruohu, C. Yi**, Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating 22(23), 1217–1222 (2014). https://doi.org/10.1364/OE.22.028662

    Article  Google Scholar 

  114. H. Guner et al., A smartphone based surface plasmon resonance imaging ( SPRi ) platform for on-site biodetection. Sensors Actuators B. Chem. 239, 571–577 (2017). https://doi.org/10.1016/j.snb.2016.08.061

    Article  Google Scholar 

  115. K. He, Y. Liu, Y. Fu, Transmit-array, metasurface-based tunable polarizer and high-performance biosensor in the visible regime. Nanomaterials 9(4), 603 (2019). https://doi.org/10.3390/nano9040603

    Article  Google Scholar 

  116. M. Shen, M. Wang, J. Zhou, L. Du, C. Deng, Nanostructured plasmonic interferometers for compact sensing, Plasmonics (2016). https://doi.org/10.1007/s11468-016-0315-1.

  117. X. Gu, R. Bai, X.R. **, Y.Q. Zhang, S. Zhang, Y. Lee, Ultra-narrow-band perfect absorber based on high-order plasmonic resonance in metamaterial. J. Nonlinear Opt. Phys. Mater. 25(1), 1650011 (2016). https://doi.org/10.1142/S0218863516500119

    Article  ADS  Google Scholar 

  118. A.K. Sharma, A.K. Pandey, Metal oxide grating based plasmonic refractive index sensor with Si layer in optical communication band. IEEE Sens. J. 20(3), 1275–1282 (2020). https://doi.org/10.1109/JSEN.2019.2947627

    Article  ADS  Google Scholar 

  119. M.J. Al-mahmod, R. Hyder, M.Z. Islam, Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications. Photonics Nanostructures - Fundam. Appl. 25, 52–57 (2017). https://doi.org/10.1016/j.photonics.2017.05.001

    Article  ADS  Google Scholar 

  120. N.L. Kazanskiy, S.N. Khonina, M.A. Butt, A. Kaźmierczak, R. Piramidowicz, A numerical investigation of a plasmonic sensor based on a metal-insulator-metal waveguide for simultaneous detection of biological analytes and ambient temperature. Nanomaterials 11(10), 2551 (2021). https://doi.org/10.3390/nano11102551

    Article  Google Scholar 

  121. P. Steglich et al., Hybrid-waveguide ring resonator for biochemical sensing. IEEE Sens. J. 17(15), 4781–4790 (2017). https://doi.org/10.1109/JSEN.2017.2710318

    Article  ADS  Google Scholar 

  122. M.A. Butt, S.N. Khonina, N.L. Kazanskiy, Sensitivity enhancement of silicon strip waveguide ring resonator by incorporating a thin metal film. IEEE Sens. J. 20(3), 1355–1362 (2020). https://doi.org/10.1109/JSEN.2019.2944391

    Article  ADS  Google Scholar 

  123. X. Sun, D. Dai, L. Thylén, L. Wosinski, Double-slot hybrid plasmonic ring resonator used for optical sensors and modulators. Photonics 2(4), 1116–1130 (2015). https://doi.org/10.3390/photonics2041116

    Article  Google Scholar 

  124. M.A. Butt, S.N. Khonina, N.L. Kazanskiy, Hybrid plasmonic waveguide-assisted metal–insulator–metal ring resonator for refractive index sensing. J. Mod. Opt. 65(9), 1135–1140 (2018). https://doi.org/10.1080/09500340.2018.1427290

    Article  ADS  Google Scholar 

  125. M.A. Butt, N.L. Kazanskiy, S.N. Khonina, Modal characteristics of refractive index engineered hybrid plasmonic waveguide. IEEE Sens. J. 20(17), 9779–9786 (2020). https://doi.org/10.1109/JSEN.2020.2991215

    Article  ADS  Google Scholar 

  126. N.L. Kazanskiy, S.N. Khonina, M.A. Butt, Subwavelength grating double slot waveguide racetrack ring resonator for refractive index sensing application. Sensors (Switzerland) 20(12), 1–13 (2020). https://doi.org/10.3390/s20123416

    Article  Google Scholar 

  127. M.A. Butt, S.N. Khonina, N.L. Kazanskiy, Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator. Waves in Random and Complex Media 30(2), 292–299 (2020). https://doi.org/10.1080/17455030.2018.1506191

    Article  ADS  MathSciNet  Google Scholar 

  128. K. M. Weerakoon-ratnayake, S. Vaidyanathan, C. A. Amarasekara, C. K. Johnson, S. A. Soper, Single molecule analysis in nanofluidic devices, in Elsevier, Elsevier Inc. 335–377 (2019).

  129. A. Rahim et al., Open-access silicon photonics platforms in Europe. IEEE J. Sel. Top. Quantum Electron. 25(5), 1–18 (2019). https://doi.org/10.1109/JSTQE.2019.2915949

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Prakash Dwivedi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, R., Sbeah, Z., Chauhan, D. et al. A Voyage from Plasmonic to Hybrid Waveguide Refractive Index Sensors Based on Wavelength Interrogation Technique: a Review. Braz J Phys 52, 61 (2022). https://doi.org/10.1007/s13538-022-01064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01064-0

Keywords

Navigation