Log in

An Innovative Approach to Construct Inverse Potentials Using Variational Monte-Carlo and Phase Function Method: Application to np and pp Scattering

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we present an innovative approach to construct inverse potentials for np-interaction directly from experimental scattering phase shifts (SPS) by considering the Morse function as an interaction potential. The inverse potentials corresponding to SPS for \(\ell = 0\)-channel of np interaction is obtained using the variational Monte-Carlo (VMC) technique in tandem with the phase function method (PFM) for the first time. The S-channel SPS for \(^3S_1\) and \(^1S_0\) have been obtained, with a mean percentage error with respect to experimental multiple energy analysis data (MEAD) for lab energies up to 350 MeV, to less than 3\(\%\). Similarly, the inverse potential for the \(^1S_0\) proton-proton (pp) interaction, with the Coulomb term modeled as proportional to erf(), has also been obtained to match experimental values to less than 3\(\%\). This approach can be utilized for obtaining inverse potentials for various scattering processes modeled via different interaction potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E.P. Wigner, L. Eisenbud, Phys. Rev. 72, 29 (1947). https://doi.org/10.1103/PhysRev.72.29

    Article  ADS  Google Scholar 

  2. A.D. Alhaidari, E.J. Heller, H.A. Yamani, M.S. Abdelmonem, The J-matrix method Development and Applications (Springer, Berlin, 2008)

    Book  Google Scholar 

  3. R.S. Mackintosh, ar**v preprint ar**v:1205.0468 (2012)

  4. S.A. Zaitsev, E.I. Kramar, J. Phys. G 27, 2037 (2001). https://doi.org/10.1088/0954-3899/27/10/306

    Article  ADS  Google Scholar 

  5. A.M. Shirokov et al., in AIP Conference Proceedings 2038, 020038 (2018) https://doi.org/10.1063/1.5078857

  6. A.M. Shirokov, A.I. Mazur, S.A. Zaytsev, J.P. Vary, T.A. Weber, Phys. Rev. C 70, 044005 (2004)

    Article  ADS  Google Scholar 

  7. A.M. Shirokov et al., in EPJ Web of Conferences 3, 05015 (2010) https://doi.org/10.1051/epjconf/20100305015

  8. A.M. Shirokov, A.I. Mazur, J.P. Vary, E.A. Mazur, Phys. Rev. C 79, 1 (2009). https://doi.org/10.1103/PhysRevC.79.014610

    Article  Google Scholar 

  9. C. van der Mee, (2000) Exact Solution of the Marchenko Equation Relevant to Inverse Scattering on the Line. In: Adamyan V.M. et al. (eds) Differential Operators and Related Topics. Operator Theory: Advances and Applications, vol 117. Birkäuser, Basel. https://doi.org/10.1007/978-3-0348-8403-7_17

  10. M. Selg, Proc. Estonian Acad. Sci. 65, 267 (2016). https://doi.org/10.3176/proc.2016.3.07

    Article  Google Scholar 

  11. D.A. Morales, Chem. Phys. Lett. 68, 394 (2004). https://doi.org/10.1016/j.cplett.2004.06.109

    Article  Google Scholar 

  12. P.M. Morse, W.P. Allis, Phys. Rev. 44, 269 (1933). https://doi.org/10.1103/PhysRev.44.269

    Article  ADS  Google Scholar 

  13. V.I. Zhaba, Mod. Phys. Lett. A 31, 1650049 (2016). https://doi.org/10.1142/S0217732316500498

    Article  ADS  Google Scholar 

  14. V.I. Zhaba, International Journal of Modern Physics E 25, 1650088 (2016). https://doi.org/10.1142/S0218301316500889

    Article  ADS  Google Scholar 

  15. F. Calogero, Variable Phase Approach to Potential Scattering (Academic, New York, 1967)

    MATH  Google Scholar 

  16. V. Babikov, Uspekhi Fiz. Nauk 3, 92 (1967). https://doi.org/10.1070/PU1967v010n03ABEH003246

    Article  Google Scholar 

  17. J. Bhoi, U. Laha, Braz. J. Phys. 46, 129 (2016). https://doi.org/10.1007/s13538-015-0388-x

    Article  ADS  Google Scholar 

  18. B. Khirali, A.K. Behera, J. Bhoi, U. Laha, J. Phys. G: Nucl. Part. Phys. 46, 115104 (2019)

    Article  ADS  Google Scholar 

  19. A.K. Behera, J. Bhoi, U. Laha, B. Khirali, Commun. Theor. Phys. 72, 075301 (2020)

    Article  ADS  Google Scholar 

  20. A. Sharma, O.S.K.S. Sastri, Int. J. Quantum Chem. 121, e26682 (2021)

    Article  Google Scholar 

  21. A. Khachi, L. Kumar, O.S.K.S. Sastri, J. Nucl. Phys. Mat. Sci. Rad. A. 9, 87 (2021) https://doi.org/10.15415/jnp.2021.91015

  22. A. Khachi, L. Kumar, A. Sharma, O.S.K.S. Sastri, J. Nucl. Phys. Mat. Sci. Rad. A. 9, 1 (2021) https://doi.org/10.15415/jnp.2021.91001

  23. R.A. Arndt et al., Phys. Rev. D 28, 97 (1983). https://doi.org/10.1103/PhysRevD.28.97

    Article  ADS  Google Scholar 

  24. M. Naghdi, Phys. Part. Nucl. 11, 410 (2014). https://doi.org/10.1134/S1547477114040244

    Article  Google Scholar 

  25. R. Malfliet, J. Tjon, Nucl. Phys. A 127, 161 (1969). https://doi.org/10.1016/0375-9474(69)90775-1

    Article  ADS  Google Scholar 

  26. P.M. Morse, Phys. Rev. 34, 57 (1929). https://doi.org/10.1103/PhysRev.34.57

    Article  ADS  Google Scholar 

  27. G.L. Greene, E.G. Kessler Jr., R.D. Deslattes, Phys. Rev. Letters 56, 819 (1986). https://doi.org/10.1103/PhysRevLett.56.819

    Article  ADS  Google Scholar 

  28. B. Buck, H. Friedrich, C. Wheatley, Nucl. Phys. A 275, 246 (1977). https://doi.org/10.1016/0375-9474(77)90287-1

    Article  ADS  Google Scholar 

  29. V.G. Stoks, R.A. Klomp, C.P. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994). https://doi.org/10.1103/PhysRevC.49.2950

    Article  ADS  Google Scholar 

  30. B. Khirali, A.K. Behera, J. Bhoi, U. Laha, Ann.Phys. (N.Y) 41, 168044 (2020) https://doi.org/10.1016/j.aop.2019.168044

Download references

Funding

We hereby state that there is no funding received for this work and also there are no conflicts of interest whatsoever.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.S.K.S Sastri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sastri, O., Khachi, A. & Kumar, L. An Innovative Approach to Construct Inverse Potentials Using Variational Monte-Carlo and Phase Function Method: Application to np and pp Scattering. Braz J Phys 52, 58 (2022). https://doi.org/10.1007/s13538-022-01063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01063-1

Keywords

Navigation