Log in

Investigating neuromodulatory effect of transauricular vagus nerve stimulation on resting-state electroencephalography

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose: The purpose of this study was to investigate the neuromodulatory effects of transauricular vagus nerve stimulation (taVNS) and determine optimal taVNS duration to induce the meaningful neuromodulatroty effects using resting-state electroencephalography (EEG). Method: Fifteen participants participated in this study and taVNS was applied to the cymba conchae for a duration of 40 min. Resting-state EEG was measured before and during taVNS application. EEG power spectral density (PSD) and brain network indices (clustering coefficient and path length) were calculated across five frequency bands (delta, theta, alpha, beta and gamma), respectively, to assess the neuromodulatory effect of taVNS. Moreover, we divided the whole brain region into the five regions of interest (frontal, central, left temporal, right temporal, and occipital) to confirm the neuromodulation effect on each specific brain region. Result: Our results demonstrated a significant increase in EEG frequency powers across all five frequency bands during taVNS. Furthermore, significant changes in network indices were observed in the theta and gamma bands compared to the pre-taVNS measurements. These effects were particularly pronounced after approximately 10 min of stimulation, with a more dominant impact observed after approximately 20–30 min of taVNS application. Conclusion: The findings of this study indicate that taVNS can effectively modulate the brain activity, thereby exerting significant effects on brain characteristics. Moreover, taVNS duration of approximately 20–30 min was considered appropriate for inducing a stable and efficient neuromodulatory effects. Consequently, these findings have the potential to contribute to research aimed at enhancing cognitive and motor functions through the modulation of EEG using taVNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Sellaro R, de Gelder B, Finisguerra A, Colzato LS. Transcutaneous vagus nerve stimulation (tVNS) enhances recognition of emotions in faces but not bodies. Cortex. 2018;99:213–23.

    Article  Google Scholar 

  2. Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a comprehensive review: part I. Headache. 2016;56(1):71–8.

    Article  Google Scholar 

  3. Meng F-G, Jia F-M, Ren X-H, Ge Y, Wang K-L, Ma Y-S, Ge M, Zhang K, Hu W-H, Zhang X. Vagus nerve stimulation for pediatric and adult patients with pharmaco-resistant epilepsy. Chin Med J-Peking. 2015;128(19):2599–604.

    Article  Google Scholar 

  4. Ben-Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol. 2002;1(8):477–82.

    Article  Google Scholar 

  5. Austelle CW, O’Leary GH, Thompson S, Gruber E, Kahn A, Manett AJ, Short B, Badran BW. A comprehensive review of vagus nerve stimulation for depression. Neuromodulation. 2022;25(3):309–15.

    Article  Google Scholar 

  6. Grimm S, Bajbouj M. Efficacy of vagus nerve stimulation in the treatment of depression. Expert Rev Neurother. 2010;10(1):87–92.

    Article  Google Scholar 

  7. Stegeman I, Velde H, Robe P, Stokroos R, Smit A. Tinnitus treatment by vagus nerve stimulation: a systematic review. PLoS ONE. 2021;16(3):e0247221.

    Article  Google Scholar 

  8. Broncel A, Bocian R, Kłos-Wojtczak P, Kulbat-Warycha K, Konopacki J. Vagal nerve stimulation as a promising tool in the improvement of cognitive disorders. Brain Res Bull. 2020;155:37–47.

    Article  Google Scholar 

  9. Merrill CA, Jonsson MA, Minthon L, Ejnell H, Silander HC-s, Blennow K, Karlsson M, Nordlund A, Rolstad S, Warkentin S. Vagus nerve stimulation in patients with Alzheimer’s disease: additional follow-up results of a pilot study through 1 year. J Clin Psychiat. 2006;67(8):1171–8.

    Article  Google Scholar 

  10. Yap JY, Keatch C, Lambert E, Woods W, Stoddart PR, Kameneva T. Critical review of transcutaneous vagus nerve stimulation: challenges for translation to clinical practice. Front Neurosci-Switz. 2020;284.

  11. Bauer S, Baier H, Baumgartner C, Bohlmann K, Fauser S, Graf W, Hillenbrand B, Hirsch M, Last C, Lerche H. Transcutaneous vagus nerve stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimul. 2016;9(3):356–63.

    Article  Google Scholar 

  12. Fang J, Egorova N, Rong P, Liu J, Hong Y, Fan Y, Wang X, Wang H, Yu Y, Ma Y. Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression. Neuroimage-Clin. 2017;14:105–11.

    Article  Google Scholar 

  13. Liu J, Fang J, Wang Z, Rong P, Hong Y, Fan Y, Wang X, Park J, ** Y, Liu C. Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression. J Affect Disorder. 2016;205:319–26.

    Article  Google Scholar 

  14. Yakunina N, Kim SS, Nam E-C. BOLD fMRI effects of transcutaneous vagus nerve stimulation in patients with chronic tinnitus. PLoS ONE. 2018;13(11):e0207281.

    Article  Google Scholar 

  15. Shim HJ, Kwak MY, An Y-H, Kim DH, Kim YJ, Kim HJ. Feasibility and safety of transcutaneous vagus nerve stimulation paired with notched music therapy for the treatment of chronic tinnitus. J Audil Otol. 2015;19(3):159.

    Article  Google Scholar 

  16. De Ridder D, Vanneste S, Engineer ND, Kilgard MP. Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation. 2014;17(2):170–9.

    Article  Google Scholar 

  17. Li R, Yang D, Fang F, Hong K-S, Reiss AL, Zhang Y. Concurrent fNIRS and EEG for brain function investigation: a systematic, methodology-focused review. Sensors-Basel. 2022;22(15):5865.

    Article  Google Scholar 

  18. He B, Yang L, Wilke C, Yuan H. Electrophysiological imaging of brain activity and connectivity—challenges and opportunities. IEEE T Bio-Med Neg. 2011;58(7):1918–31.

    Article  Google Scholar 

  19. Pihlaja M, Failla L, Peräkylä J, Hartikainen KM. Reduced frontal Nogo-N2 with uncompromised response inhibition during transcutaneous vagus nerve stimulation—more efficient cognitive control? Front Hum Neurosci. 2020;14:561780.

    Article  Google Scholar 

  20. Fischer R, Ventura-Bort C, Hamm A, Weymar M. Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cog Affect Behav Ne. 2018;18:680–93.

    Article  Google Scholar 

  21. Sharon O, Fahoum F, Nir Y. Transcutaneous vagus nerve stimulation in humans induces pupil dilation and attenuates alpha oscillations. J Neurosci. 2021;41(2):320–30.

    Article  Google Scholar 

  22. Ricci L, Croce P, Lanzone J, Boscarino M, Zappasodi F, Tombini M, Di Lazzaro V, Assenza G. Transcutaneous vagus nerve stimulation modulates EEG microstates and delta activity in healthy subjects. Brain Sci. 2020;10(10):668.

    Article  Google Scholar 

  23. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–98.

    Article  Google Scholar 

  24. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 2010;52(3):1059–69.

    Article  Google Scholar 

  25. Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87(19):198701.

    Article  Google Scholar 

  26. Smit DJ, Stam CJ, Posthuma D, Boomsma DI, De Geus EJ. Heritability of small-world networks in the brain: a graph theoretical analysis of resting‐state EEG functional connectivity. Hum Brain Mapp. 2008;29(12):1368–78.

    Article  Google Scholar 

  27. Bastos AM, Schoffelen J-M. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front Syst Neurosci. 2016;9:175.

    Article  Google Scholar 

  28. Gianlorenco ACL, de Melo PS, Marduy A, Kim AY, Kim CK, Choi H, Song J-J, Fregni F. Electroencephalographic patterns in taVNS: a systematic review. Biomedicines. 2022;10(9):2208.

    Article  Google Scholar 

  29. Farmer AD, Strzelczyk A, Finisguerra A, Gourine AV, Gharabaghi A, Hasan A, Burger AM, Jaramillo AM, Mertens A, Majid A. International consensus based review and recommendations for minimum reporting standards in research on transcutaneous vagus nerve stimulation (version 2020). Front Hum Neurosci. 2021;14:568051.

    Article  Google Scholar 

  30. Chen L, Zhang J, Wang Z, Zhang X, Zhang L, Xu M, Liu S, Ming D. Effects of transcutaneous vagus nerve stimulation (tVNS) on action planning: a behavioural and EEG study. IEEE T Neur SYS REH. 2021;30:1675–83.

    Article  Google Scholar 

  31. Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014;7(6):871–7.

    Article  Google Scholar 

  32. Kreuzer PM, Landgrebe M, Husser O, Resch M, Schecklmann M, Geisreiter F, Poeppl TB, Prasser SJ, Hajak G, Langguth B. Transcutaneous vagus nerve stimulation: retrospective assessment of cardiac safety in a pilot study. Front Psychiatry. 2012;3:70.

    Article  Google Scholar 

  33. Keute M, Wienke C, Ruhnau P, Zaehle T. Effects of transcutaneous vagus nerve stimulation (tVNS) on beta and gamma brain oscillations. Cortex. 2021;140:222–31.

    Article  Google Scholar 

  34. Chan H-L, Tsai Y-T, Meng L-F, Wu T. The removal of ocular artifacts from EEG signals using adaptive filters based on ocular source components. Ann Biomed Eng. 2010;38:3489–99.

    Article  Google Scholar 

  35. Donaldson PH, Kirkovski M, Rinehart NJ, Enticott PG. A double-blind HD-tDCS/EEG study examining right temporoparietal junction involvement in facial emotion processing. Soc Neurosci-UK. 2019;14(6):681–96.

    Article  Google Scholar 

  36. Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip. Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intel Neurosc. 2011;2011:1–9.

    Article  Google Scholar 

  37. Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. 1937;32(200):675–701.

    Article  Google Scholar 

  38. Berger A, Pixa NH, Steinberg F, Doppelmayr M. Brain oscillatory and hemodynamic activity in a bimanual coordination task following transcranial alternating current stimulation (tACS): a combined EEG-fNIRS study. Front Behav Neurosci. 2018;12:67.

    Article  Google Scholar 

  39. Spitoni GF, Cimmino RL, Bozzacchi C, Pizzamiglio L, Di Russo F. Modulation of spontaneous alpha brain rhythms using low-intensity transcranial direct-current stimulation. Front Hum Neurosci. 2013;7:529.

    Article  Google Scholar 

  40. Mangia AL, Pirini M, Cappello A. Transcranial direct current stimulation and power spectral parameters: a tDCS/EEG co-registration study. Front Hum Neurosci. 2014;8:601.

    Article  Google Scholar 

  41. Keatch C, Lambert E, Woods W, Kameneva T. Measuring brain response to transcutaneous vagus nerve stimulation (tVNS) using simultaneous magnetoencephalography (MEG). J Neural Eng. 2022;19(2):026038.

    Article  Google Scholar 

  42. Rings T, von Wrede R, Bröhl T, Schach S, Helmstaedter C, Lehnertz K. Impact of transcutaneous auricular vagus nerve stimulation on large-scale functional brain networks: from local to global. Front Physiol. 2021; 1328.

  43. von Wrede R, Rings T, Schach S, Helmstaedter C, Lehnertz K. Transcutaneous auricular vagus nerve stimulation induces stabilizing modifications in large-scale functional brain networks: towards understanding the effects of taVNS in subjects with epilepsy. Sci Rep-UK. 2021;11(1):7906.

    Article  Google Scholar 

  44. Sauseng P, Griesmayr B, Freunberger R, Klimesch W. Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav R. 2010;34(7):1015–22.

    Article  Google Scholar 

  45. Jensen O, Tesche CD. Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci. 2002;15(8):1395–9.

    Article  Google Scholar 

  46. Howard MW, Rizzuto DS, Caplan JB, Madsen JR, Lisman J, Aschenbrenner-Scheibe R, Schulze-Bonhage A, Kahana MJ. Gamma oscillations correlate with working memory load in humans. Cereb Cortex. 2003;13(12):1369–74.

    Article  Google Scholar 

  47. Roux F, Wibral M, Mohr HM, Singer W, Uhlhaas PJ. Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. J Neurosci. 2012;32(36):12411–20.

    Article  Google Scholar 

  48. Sun J-B, Cheng C, Tian Q-Q, Yuan H, Yang X-J, Deng H, Guo X-Y, Cui Y-P, Zhang M-K, Yin Z-X. Transcutaneous auricular vagus nerve stimulation improves spatial working memory in healthy young adults. Front Neurosci-Switz. 2021;15:790793.

    Article  Google Scholar 

  49. Jacobs HI, Riphagen JM, Razat CM, Wiese S, Sack AT. Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol Aging. 2015;36(5):1860–7.

    Article  Google Scholar 

  50. Rufener KS, Geyer U, Janitzky K, Heinze HJ, Zaehle T. Modulating auditory selective attention by non-invasive brain stimulation: Differential effects of transcutaneous vagal nerve stimulation and transcranial random noise stimulation. Eur J Neurosci. 2018;48(6):2301–9.

    Article  Google Scholar 

  51. Gadeyne S, Mertens A, Van den Carrette E, Boon P, Raedt R, Vonck K. Transcutaneous auricular vagus nerve stimulation cannot modulate the P3b event-related potential in healthy volunteers. Clin Neurophysiol. 2022;135:22–9.

    Article  Google Scholar 

  52. Imburgio MJ, Orr JM. Effects of prefrontal tDCS on executive function: methodological considerations revealed by meta-analysis. Neuropsychologia. 2018;117:156–66.

    Article  Google Scholar 

  53. Wu L, Liu T, Wang J. Improving the effect of transcranial alternating current stimulation (tACS): a systematic review. Front Hum Neurosci. 2021;15:652393.

    Article  Google Scholar 

  54. Lee TL, Lee H, Kang N. A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. Npj Sci Learn. 2023;8(1):1.

    Article  Google Scholar 

Download references

Funding

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by Ministry of Education (No. 2019R1I1A3A01060732), the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. IITP-2024-RS-2023-00258971), and the Neurive Co., Ltd (Q2129191).

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the initial study. Analyzed the data, and wrote the manuscript by [Yun-Sung Lee] and [Woo-** Kim]. Wrote the manuscript by [Miseon Shim], [Hyuk Choi], and [Jae-Jun Song]. Provided the study instrumentation by [Ki Hwan Hong], [Hyuk Choi] and [Jae-Jun Song]. Supervised data analysis, and revised the manuscript by [Han-Jeong Hwang]. All authors had full access to all data in the study and responsibility for the integrity of the data and accuracy of the data analysis.

Corresponding author

Correspondence to Han-Jeong Hwang.

Ethics declarations

Ethical approval

The protocol of this study was approved by the Institutional Review Board (IRB) of Korea University (KUIRB-2022-0077-01).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YS., Kim, WJ., Shim, M. et al. Investigating neuromodulatory effect of transauricular vagus nerve stimulation on resting-state electroencephalography. Biomed. Eng. Lett. 14, 677–687 (2024). https://doi.org/10.1007/s13534-024-00361-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-024-00361-8

Keywords

Navigation