Log in

Colloidal behaviors of ZnO nanoparticles in various aqueous media

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

We have evaluated the particle sizes, zeta potentials and hydrodynamic radii of zinc oxide (ZnO) nanoparticles in various aqueous conditions such as deionized water, phosphate buffered saline and Minimum Essential Media Eagle. In order to study the size and surface chemistry effect in colloidal behaviors, different size of 20 and 70 nm ZnO nanoparticles were selected and their surface was modified with either citrate or L-serine. It was revealed that surface modification did not strongly affect the particle size or morphology but altered the surface charge and chemistry. In various aqueous media, although the surface charge of ZnO nanoparticles are slightly affected by the existence of electrolyte, the overall particle sizes and morphologies are determined to be preserved, suggesting that their properties as nanoparticles are not significantly changed in physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trindade, T., O’Brien, P. & Pickett, N. L. Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem. Mat. 13, 3843–3858 (2001).

    Article  CAS  Google Scholar 

  2. Kumar, C. in Nanotechnologies for the life sciences Vol. 5 (ed Challa Kumar) (Wiley-VCH, Weinheim, 2006).

    Google Scholar 

  3. Jiang, J. K., Oberdorster, G. & Biswas, P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 11, 77–89 (2009).

    Article  CAS  Google Scholar 

  4. Djambazov, S., Ivanova, Y., Yoleva, A. & Nedelchev, N. Ceramic pigments on the base of the CoO-ZnOSiO2 system obtained by a sol-gel method. Ceram. Int. 24, 281–284 (1998).

    Article  CAS  Google Scholar 

  5. Sulcova, P. & Trojan, M. New yellow pigments: ZnOBi2O3. Dyes Pigment. 36, 287–293 (1998).

    Article  CAS  Google Scholar 

  6. Klingshirn, C. ZnO: From basics towards applications. Phys. Status Solidi B-Basic Solid State Phys. 244, 3027–3073 (2007).

    Article  CAS  Google Scholar 

  7. Lin, H. F., Liao, S. C. & Hung, S. W. The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J. Photochem. Photobiol. A-Chem. 174, 82–87 (2005).

    Article  CAS  Google Scholar 

  8. Irimpan, L., Nampoori, V. P. N., Radhakrishnan, P., Deepthy, A. & Krishnan, B. Size dependent fluorescence spectroscopy of nanocolloids of ZnO. J. Appl. Phys. 102, doi:06352410.1063/1.2778637 (2007).

    Google Scholar 

  9. Makhal, A. et al. Dynamics of light harvesting in ZnO nanoparticles. Nanotechnology 21, doi:26570310.1088/0957-4484/21/26/265703 (2010).

  10. King, D. M. et al. Atomic layer deposition of UVabsorbing ZnO films on SiO2 and TiO2 nanoparticles using a fluidized bed reactor. Adv. Funct. Mater. 18, 607–615 (2008).

    Article  CAS  Google Scholar 

  11. Xue, C. H., Yin, W., Jia, S. T. & Ma, J. Z. UV-durable superhydrophobic textiles with UV-shielding properties by coating fibers with ZnO/SiO2 core/shell particles. Nanotechnology 22, doi:41560310.1088/0957-4484/22/41/415603 (2011).

    Google Scholar 

  12. Beani, J. C. Solar protection products: Efficacy and risks. Ann. Dermatol. Venereol. 139, 261–272 (2012).

    Article  PubMed  Google Scholar 

  13. Lippard, S. J. & Berg, J. M. Princlples of Bioinorganic chemistry. 1 (University Science Book, 1994).

  14. Lu, X. B., Zhang, H. J., Ni, Y. W., Zhang, Q. & Chen, J. P. Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors. Biosens. Bioelectron. 24, 93–98 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. Moussodia, R. O., Balan, L., Merlin, C., Mustin, C. & Schneider, R. Biocompatible and stable ZnO quantum dots generated by functionalization with siloxane-core PAMAM dendrons. J. Mater. Chem. 20, 1147–1155 (2010).

    Article  CAS  Google Scholar 

  16. Teow, Y., Asharani, P. V., Hande, M. P. & Valiyaveettil, S. Health impact and safety of engineered nanomaterials. Chem. Commun. 47, 7025–7038 (2011).

    Article  CAS  Google Scholar 

  17. Degen, A. & Kosec, M. Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J. Eur. Ceram. Soc. 20, 667–673 (2000).

    Article  CAS  Google Scholar 

  18. Cullity, B. D. Elements of X-ray diffraction. 2nd Ed. edn, (Addison-Wesley Publishing Company Inc., 1978).

  19. Oh, J. M., Park, D. H. & Choy, J. H. Integrated bioinorganic hybrid systems for nano-forensics. Chem. Soc. Rev. 40, 583–595 (2011).

    Article  PubMed  CAS  Google Scholar 

  20. Schulze, C. et al. Not ready to use-overcoming pitfalls when dispersing nanoparticles in physiological media. Nanotoxicology 2, 51–U17 (2008).

    Article  CAS  Google Scholar 

  21. Baes, C. F. J. & Mesmer, R. E. The hydrolysis of cations. (John Wiley & Sons, 1976).

  22. de Freitas, E. R. L. et al. In vitro biological activities of anionic gamma-Fe2O3 nanoparticles on human melanoma cells. J. Nanosci. Nanotechnol. 8, 2385–2391 (2008).

    Article  PubMed  Google Scholar 

  23. Schwegmann, H., Feitz, A. J. & Frimmel, F. H. Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli. J. Colloid Interface Sci. 347, 43–48 (2010).

    Article  PubMed  CAS  Google Scholar 

  24. Chen, L. A., McCrate, J. M., Lee, J. C. M. & Li, H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22, doi:10570810.1088/0957-4484/22/10/105708 (2011).

    Google Scholar 

  25. Kendall, M., Ding, P. & Kendall, K. Particle and nanoparticle interactions with fibrinogen: the importance of aggregation in nanotoxicology. Nanotoxicology 5, 55–65 (2011).

    Article  PubMed  CAS  Google Scholar 

  26. Mura, S. et al. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int. J. Nanomed. 6, 2591–2605 (2011).

    CAS  Google Scholar 

  27. Merhi, M. et al. Study of serum interaction with a cationic nanoparticle: Implications for in vitro endocytosis, cytotoxicity and genotoxicity. Int. J. Pharm. 423, 37–44 (2012).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Min Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KM., Kim, TH., Kim, HM. et al. Colloidal behaviors of ZnO nanoparticles in various aqueous media. Toxicol. Environ. Health Sci. 4, 121–131 (2012). https://doi.org/10.1007/s13530-012-0126-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-012-0126-5

Keywords

Navigation