Log in

The effect of atorvastatin on the concentrations of methylglyoxal, glyoxalase 1, and aldo–keto reductase family 1 member B10 in patients with type 2 diabetes mellitus and prediabetes

  • Original Article
  • Published:
International Journal of Diabetes in Develo** Countries Aims and scope Submit manuscript

Abstract

Background

Type 2 diabetes mellitus (T2DM) is often associated with metabolic disorders. Statin drugs are potent inhibitors of cholesterol biosynthesis.

Objective

The aim of this study was to evaluate the effect of atorvastatin on the concentrations of methylglyoxal (MGO), glyoxalase 1 (GLO-1), and aldo–keto reductase family 1 member B10 (AKR1B10) in patients with T2DM and prediabetes.

Methods

This study was conducted on 80 subjects with and without T2DM and prediabetics divided into 5 groups: patients with T2DM receiving statins (group A, n = 17), patients with T2DM not receiving statins (group B, n = 17), patients with prediabetes receiving statins (group C, n = 12), patients with prediabetes not receiving statins (group D, n = 17), and healthy controls without T2DM (control group, n = 17). Patients with T2DM and prediabetes received atorvastatin 20 mg/day for 3 months. The measurement of MGO and AKR1B10 was performed with a non-competitive sandwich-type enzyme-linked immunosorbent assay (ELISA) at 450 nm. The measurement of GLO-1 was performed by an enzymatic method at 240 nm.

Results

The serum level of MGO was significantly higher in patients with T2DM and prediabetes than that of healthy controls (p = 0.001). In patients with T2DM, statins decreased the serum level of MGO, but in patients with prediabetes, statins increased the serum level of MGO (p = 0.001). The level of GLO-1 activity was significantly higher in healthy controls than that of patients with T2DM and prediabetes (p = 0.001). Furthermore, the level of GLO-1 activity was significantly higher in patients with T2DM and prediabetes receiving statins than that of patients with T2DM and prediabetes not receiving statins (p = 0.002). The serum level of AKR1B10 was significantly higher in groups C and D than that of the other groups (p = 0.001).

Conclusion

Atorvastatin can improve the level of GLO-1 activity and thereby prevent diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No additional data are available.

References

  1. Centers for Disease Control and Prevention (CDC), et al. Awareness of prediabetes--United States, 2005-2010. Morbidity and Mortality Weekly Report (MMWR). 2013;62(11):209.

  2. Lily M, Godwin M. Treating prediabetes with metformin: systematic review and meta-analysis. Can Fam Physician. 2009;55(4):363–9.

    PubMed  Google Scholar 

  3. Wang N, Cheng J, Ning Z, Chen Y, Han B, Li Q, et al. Type 2 diabetes and adiposity induce different lipid profile disorders: a mendelian randomization analysis. J Clin Endocrinol Metab. 2018;103(5):2016–25.

    Article  PubMed  Google Scholar 

  4. Qujeq D, Mahrooz A, Alizadeh A, Masoumi P, Annemohammadzadeh S, Boorank R. Genotype and phenotype of salt-stimulated paraoxonase 1 (PON1) is associated with atherogenic indices in type 2 diabetes. J Diabetes Metab Disord. 2018;17(1):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liao JK. Effects of statins on 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition beyond low-density lipoprotein cholesterol. Am J Cardiol. 2005;96(5):24–33.

    Article  Google Scholar 

  6. Chasman DI, Posada D, Subrahmanyan L, Cook NR, Stanton JVP, Ridker PM. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA. 2004;291(23):2821–7.

    Article  CAS  PubMed  Google Scholar 

  7. Glorioso N, Troffa C, Filigheddu F, Dettori F, Soro A, Parpaglia PP, et al. Effect of the HMG-CoA reductase inhibitors on blood pressure in patients with essential hypertension and primary hypercholesterolemia. Hypertension. 1999;34(6):1281–6.

    Article  CAS  PubMed  Google Scholar 

  8. Blum A, Shamburek R. The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis. 2009;203(2):325–30.

    Article  CAS  PubMed  Google Scholar 

  9. White CM. A review of the pharmacologic and pharmacokinetic aspects of rosuvastatin. J Clin Pharmacol. 2002;42(9):963–70.

    Article  CAS  PubMed  Google Scholar 

  10. Agouridis AP, Kostapanos MS, Elisaf MS. Statins and their increased risk of inducing diabetes. Expert Opin Drug Saf. 2015;14(12):1835–44.

    Article  CAS  PubMed  Google Scholar 

  11. Sawada N, Liao JK. Rho/Rho-associated coiled-coil forming kinase pathway as therapeutic targets for statins in atherosclerosis. Antioxid Redox Signal. 2014;20(8):1251–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aiman U, Najmi A, Khan RA. Statin induced diabetes and its clinical implications. J Pharmacol Pharmacother. 2014;5(3):181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown JH, Del Re DP, Sussman MA. The Rac and Rho hall of fame. Circ Res. 2006;98(6):730–42.

    Article  CAS  PubMed  Google Scholar 

  14. Sawada N, Liao JK. Rho/Rho-associated coiled-coil forming kinase pathway as therapeutic targets for statins in atherosclerosis. Antioxid Redox Signal. 2014;20(8):1251–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kwok JM, Ma CCH, Ma S. Recent development in the effects of statins on cardiovascular disease through Rac1 and NADPH oxidase. Vascul Pharmacol. 2013;58(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  16. Rashid M, Tawara S, Fukumoto Y, Seto M, Yano K, Shimokawa H. Importance of Rac1 signaling pathway inhibition in the pleiotropic effects of HMG-CoA reductase inhibitors. Circ J. 2009;73(2):361–70.

    Article  CAS  PubMed  Google Scholar 

  17. Babelova A, Jansen F, Sander K, Löhn M, Schäfer L, Fork C, et al. Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease. PLoS ONE. 2013;8(11): e80328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanaka SI, Fukumoto Y, Nochioka K, Minami T, Kudo S, Shiba N, et al. Statins exert the pleiotropic effects through small GTP-binding protein dissociation stimulator upregulation with a resultant Rac1 degradation significance. Arterioscler Thromb Vasc Biol. 2013;33(7):1591–600.

    Article  CAS  PubMed  Google Scholar 

  19. Margaritis M, Sanna F, Antoniades C. Statins and oxidative stress in the cardiovascular system. Curr Pharm Des. 2017;23(46):7040–7.

    Article  CAS  Google Scholar 

  20. Den Hartog G, Chattopadhyay R, Ablack A, Hall EH, Butcher LD, Bhattacharyya A, et al. Regulation of Rac1 and reactive oxygen species production in response to infection of gastrointestinal epithelia. PLoS Pathog. 2016;12(1): e1005382.

    Article  Google Scholar 

  21. Shen E, Li Y, Li Y, Shan L, Zhu H, Feng Q, et al. Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. Diabetes. 2009;58(10):2386–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. ** S, Ray RM, Johnson LR. TNF-α/cycloheximide-induced apoptosis in intestinal epithelial cells requires Rac1-regulated reactive oxygen species. Am J Physiol Gastrointest Liver Physiol. 2008;294(4):928–37.

    Article  Google Scholar 

  23. Ota H, Eto M, Kano MR, Kahyo T, Setou M, Ogawa S, et al. Induction of endothelial nitric oxide synthase, Sirt1, and catalase by statins inhibits endothelial senescence through the AKT pathway. Arterioscler Thromb Vasc Biol. 2010;30(11):2205–11.

    Article  CAS  PubMed  Google Scholar 

  24. Maessen DE, Hanssen NM, Scheijen JL, van der Kallen CJ, van greevenbroek MM, Stehouwer CD, Schalkwijk CG. Post–glucose load plasma α-dicarbonyl concentrations are increased in individuals with impaired glucose metabolism and type 2 diabetes: the CODAM study. Diabetes Care. 2015;38(5):913–20.

    Article  CAS  PubMed  Google Scholar 

  25. Stitt AW. AGEs and diabetic retinopathy. Invest Ophthalmol Vis Sci. 2010;51(10):4867–74.

    Article  PubMed  Google Scholar 

  26. Maessen DE, Hanssen NM, Lips MA, Scheijen JL, van Dijk KW, Pijl H, et al. Energy restriction and Roux-en-Y gastric bypass reduce postprandial α-dicarbonyl stress in obese women with type 2 diabetes. Diabetologia. 2016;59(9):2013–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brouwers O, Niessen PM, Miyata T, Østergaard JA, Flyvbjerg A, Peutz-Kootstra CJ, et al. Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes. Diabetologia. 2014;57(1):224–35.

    Article  CAS  PubMed  Google Scholar 

  28. Chen HJC, Chen YC, Hsiao CF, Chen PF. Mass spectrometric analysis of glyoxal and methylglyoxal-induced modifications in human hemoglobin from poorly controlled type 2 diabetes mellitus patients. Chem Res Toxicol. 2015;28(12):2377–89.

    Article  CAS  PubMed  Google Scholar 

  29. Beisswenger PJ. Methylglyoxal in diabetes: link to treatment, glycaemic control and biomarkers of complications. Biochem Soc Trans. 2014;42(2):450–6.

    Article  CAS  PubMed  Google Scholar 

  30. Dornadula S, Elango B, Balashanmugam P, Palanisamy R, Kunka MR. Pathophysiological insights of methylglyoxal induced type-2 diabetes. Chem Res Toxicol. 2015;28(9):1666–74.

    Article  CAS  PubMed  Google Scholar 

  31. Tang W, Martin KA, Hwa J. Aldose reductase, oxidative stress and diabetic mellitus. Front Pharmacol. 2012;3:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Van Boekel MAJS. Formation of flavour compounds in the maillard reaction. Biotechnol Adv. 2006;24(2):230–3.

    Article  PubMed  Google Scholar 

  33. Hayashi CM, Nagai R, Miyazaki K, Hayase F, Araki T, Ono T, Horiuchi S. Conversion of amadori products of the maillard reaction to N [straight epsilon]-(carboxymethyl) lysine by short-term heating: possible detection of artifacts by immunohistochemistry. Lab Invest. 2002;82(6):795.

    Article  CAS  Google Scholar 

  34. Turk Z. Glycation and complications of diabetes. Diabetologia Croat. 2001;30(2):49–54.

    Google Scholar 

  35. Hayase F. Recent development of 3-deoxyosone related maillard reaction products. Food Sci Technol Res. 2007;6(2):79–86.

    Article  Google Scholar 

  36. Semchyshyn HM. Fructation in vivo: detrimental and protective effects of fructose. Biomed Res Int. 2013;2013: 343914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999;344(1):109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moriyama T, Kawada N, Nagatoya K, Takeji M, Horio M, Ando A, et al. Fluvastatin suppresses oxidative stress and fibrosis in the interstitium of mouse kidneys with unilateral ureteral obstruction. Kidney Int. 2001;59(6):2095–103.

    Article  CAS  PubMed  Google Scholar 

  39. Lange JN, Wood KD, Knight J, Assimos DG, Holmes RP. Glyoxal formation and its role in endogenous oxalate synthesis. Adv Urol. 2012;2012: 819202.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Masania J, Malczewska-Malec M, Razny U, Goralska J, Zdzienicka A, Kiec-Wilk B, et al. Dicarbonyl stress in clinical obesity. Glycoconj J. 2016;33(4):581–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bair WB III, Cabello CM, Uchida K, Bause AS, Wondrak GT. GLO1 overexpression in human malignant melanoma. Melanoma Res. 2010;20(2):85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hirakawa Y, Inagi R. Glycative stress and its defense machinery glyoxalase 1 in renal pathogenesis. Int J Mol Sci. 2017;18(1):174.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rabbani N, Thornalley PJ. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem Biophys Res Commun. 2015;458(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  44. Weber J, Kayser A, Rinas U. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour. Microbiology. 2005;151(3):707–16.

    Article  CAS  PubMed  Google Scholar 

  45. Huang SP, Palla S, Ruzycki P, Varma RA, Harter T, Reddy GB, Petrash JM. Aldo-keto reductases in the eye. J Ophthalmol. 2010;2010: 521204.

    PubMed  PubMed Central  Google Scholar 

  46. Muthenna P, Suryanarayana P, Gunda SK, Petrash JM, Reddy GB. Inhibition of aldose reductase by dietary antioxidant curcumin: mechanism of inhibition, specificity and significance. FEBS Lett. 2009;583(22):3637–42.

    Article  CAS  PubMed  Google Scholar 

  47. Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev. 2008;40(4):553–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shaw N, Yang B, Millward A, Demaine A, Hodgkinson A. AKR1B10 is induced by hyperglycaemia and lipopolysaccharide in patients with diabetic nephropathy. Cell Stress Chaperones. 2014;19(2):281–7.

    Article  CAS  PubMed  Google Scholar 

  49. Nikiforova VJ, Giesbertz P, Wiemer J, Bethan B, Looser R, Liebenberg V, et al. Glyoxylate, a new marker metabolite of type 2 diabetes. J Diabetes Res. 2014;2014:685204.

  50. Kain V, Kapadia B, Misra P, Saxena U. Simvastatin may induce insulin resistance through a novel fatty acid mediated cholesterol independent mechanism. Sci Rep. 2015;5:13823.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kennedy DJ, Kuchibhotla S, Westfall KM, Silverstein RL, Morton RE, Febbraio M. A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling. Cardiovasc Res. 2011;89(3):604–61.

    Article  CAS  PubMed  Google Scholar 

  52. Boden G. Obesity and free fatty acids. Endocrinol Metab Clin North Am. 2008;37(3):635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yada T, Nakata M, Shiraishi T, Kakei M. Inhibition by simvastatin, but not pravastatin, of glucose-induced cytosolic Ca2+ signalling and insulin secretion due to blockade of L-type Ca2+ channels in rat islet β-cells. Br J Pharmacol. 1999;126(5):1205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735–42.

    Article  CAS  PubMed  Google Scholar 

  55. Agouridis AP, Kostapanos MS, Elisaf MS. Statins and their increased risk of inducing diabetes. Expert Opin Drug Saf. 2015;14(12):1835–44.

    Article  CAS  PubMed  Google Scholar 

  56. Tsuchiya M, Hosaka M, Moriguchi T, Zhang S, Suda M, Yokota-Hashimoto H, et al. Cholesterol biosynthesis pathway intermediates and inhibitors regulate glucose-stimulated insulin secretion and secretory granule formation in pancreatic β-cells. Endocrinology. 2010;151(10):4705–16.

    Article  CAS  PubMed  Google Scholar 

  57. Giacco F, Du X, D’agati VD, Milne R, Sui G, Geoffrion M, Brownlee M. Knockdown of Glo1 mimics diabetic nephropathy in non-diabetic mice. Diabetes. 2014;63(1):291–9.

    Article  CAS  PubMed  Google Scholar 

  58. Brouwers O, Niessen PM, Ferreira I, Miyata T, Scheffer PG, Teerlink T, et al. Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J Biol Chem. 2011;286(2):1374–80.

    Article  CAS  PubMed  Google Scholar 

  59. Ruf TF, Quintes S, Sternik P, Gottmann U. Atorvastatin reduces the expression of aldo-keto reductases in HUVEC and PTEC. A new approach to influence the polyol pathway. Clin Investig Med. 2009;32(3):219–28.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Hormozgan University of Medical Sciences. We are grateful to Dr Mir and Dr Karimian for their technical assistance in biochemical assays.

Author information

Authors and Affiliations

Authors

Contributions

DQ designed the experiments. AN performed the experiments. KH analyzed the data, and SM contributed to the writing and revising of the manuscript.

Corresponding authors

Correspondence to Soheila Moein or Durdi Qujeq.

Ethics declarations

Institutional review board statement

The study was approved by the Ethics Committee of Hormozgan University of Medical Sciences.

Arrive guidelines statement

The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.

Conflict of interest

The authors declare no conflict of interests.

Ethical clearance and consent of participation

This study was approved by the Ethics Committee of Hormozgan University of Medical Sciences (HUMS.REC.1395.127). Written consent was obtained from all subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andevari, A.N., Moein, S., Qujeq, D. et al. The effect of atorvastatin on the concentrations of methylglyoxal, glyoxalase 1, and aldo–keto reductase family 1 member B10 in patients with type 2 diabetes mellitus and prediabetes. Int J Diabetes Dev Ctries 44, 400–408 (2024). https://doi.org/10.1007/s13410-023-01249-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-023-01249-6

Keywords

Navigation