Log in

Characterization of breast cancer antibody (anti-HER-II) conjugated on PEGylated gold nanourchin for active targeting

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

Conjugation and characterization of poly-ethylene–glycol (PEG)-functionalized gold nanourchin (GNU) with breast cancer biomarker HER-II monoclonal antibody (mAb) (i.e., anti-HER-II) for selective targeting are described. After the functionalization of GNU with PEG, the surface plasmon resonance (SPR) peak was red-shifted, indicating the increase in the hydrodynamic size of the GNU. The Fourier-transform near-infrared spectroscopy (FT-NIR) second derivative result of GNU-PEG provided overtone and combination bands of fundamental vibrational modes of protein molecular structures between 4000 and 7500 cm−1. This mainly included C–H combination and CH2 bonds, O–H first stretch overtones, the C–H first stretch overtone, and the CH2 combination first overtone. The UV–Vis absorbance showed a strong absorption of light at 227 and 275 nm corresponding to tyrosine peaks. The fluorescence emission peak at 315 nm corresponds to Stokes shift when excited by 280 nm corresponding to tyrosine in the mAb, and the peak at 497 nm likely corresponds to alanine. After conjugation of GNU-PEG with mAb, the FT-NIR indicated the bands corresponding to NH2 combination and amino acids, first overtone symmetric and antisymmetric OH stretching, C–H combination, and the second overtones and combination modes. Surface-enhanced Raman scattering (SERS) provided useful information on the molecular structure and composition of the sample within 300–3500 cm−1. The intensity behavior of SERS signals exhibited a statistical nature due to Brownian fluctuating movement. In addition, the intensity and number of SERS lines varied with the laser power. The dominant peaks were corresponding to histidine, tyrosine, tryptophan, phenylalanine, and C–H, N–H, C–N, and O–H bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bao G, Mitragotri S, Sheng T (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15:253–282. https://doi.org/10.1146/annurev-bioeng-071812-152409

    Article  CAS  Google Scholar 

  2. Sinha R, Gloria J, Nie S, Shin DM (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5:1909–1917. https://doi.org/10.1158/1535-7163.MCT-06-0141

    Article  CAS  Google Scholar 

  3. Khosroshahi ME, Ghazanfari L, Hassannejad Z, Lenhert S (2015) In-vitro application of doxorubicin loaded magnetoplasmonic thermosensitive liposomes for laser hyperthermia and chemotherapy of breast cancer. J Nanomed Nanotechnol 6:1–9. https://doi.org/10.4172/2157-7439.1000298

    Article  CAS  Google Scholar 

  4. Urban C, Urban AS, Charron H, Joshi A (2013) Externally modulated theranostic nanoparticles. Transl Cancer Res 2:292–308. https://doi.org/10.3978/j.issn.2218-676X.2013.08.05

    Article  CAS  Google Scholar 

  5. Yang J, Zhang X, Liu C, Wang Z, Deng L, Feng C, Tao W, Xu X, Cui W (2021) Biologically modified nanoparticles as theranostic bionanomaterials. Prog Mater Sci 118:100768. https://doi.org/10.1016/j.pmatsci.2020.100768

    Article  CAS  Google Scholar 

  6. Loeb KR, Loeb LA (2000) Significance of multiple mutations in cancer. Carcinogenesis 21:379–385. https://doi.org/10.1093/carcin/21.3.379

    Article  CAS  Google Scholar 

  7. Siegel RL, Jamel A, Wander RC et al (2018) An assessment of progress in cancer control. CA Can J Clin 68:329–339. https://doi.org/10.3322/caac.21460

    Article  Google Scholar 

  8. Fan L, Strasser-Weippl K, Li J, St Louis J, Finkelstein D, Yu K et al (2014) Breast cancer in China. Lancet Oncol 15:e279–e289. https://doi.org/10.1016/S1470-2045(13)70567-9

    Article  Google Scholar 

  9. Momenimovahed Z, Salehiniya H (2019) Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer 11:151–164. https://doi.org/10.2147/BCTT.S176070

    Article  Google Scholar 

  10. Zhang P, **ao J, Ruan Y, Zhang Z, Zhang X (2020) Monitoring value of serum HER2 as a predictive biomarker in patients with metastatic breast cancer. Cancer Manag Res 12:4667–4675. https://doi.org/10.2147/CMAR.S254897

    Article  CAS  Google Scholar 

  11. Tanaka T, Decuzzi P, Cristofanilli M et al (2008) Nanotechnology for breast cancer therapy. Biomed Microdevices 11:49–63. https://doi.org/10.1007/s10544-008-9209-0

    Article  CAS  Google Scholar 

  12. Handy B (2009) The clinical utility of tumor markers. Lab Med 40:99–103. https://doi.org/10.1309/LMTRKSKYW4GI6SBJ

    Article  Google Scholar 

  13. Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5:845–856. https://doi.org/10.1038/nrc1739

    Article  CAS  Google Scholar 

  14. Sano K, Mitsunaga M, Nakajima T, Choyke PL, Kobayashi H (2012) In vivo breast cancer characterization imaging using two monoclonal antibodies activatably labeled with near infrared fluorophores. Breast Can Res 14:R61. https://doi.org/10.1186/bcr3167

    Article  CAS  Google Scholar 

  15. Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84:4023–4032. https://doi.org/10.1016/S0006-3495(03)75128-5

    Article  CAS  Google Scholar 

  16. Jiang S, Win KY, Liu S, Teng CP, Zheng Y, Han M (2013) Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale 5:3127–3148. https://doi.org/10.1039/c3nr34005h

    Article  CAS  Google Scholar 

  17. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297. https://doi.org/10.1146/annurev.physchem.58.032806.104607

    Article  CAS  Google Scholar 

  18. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248. https://doi.org/10.1021/jp057170o

    Article  CAS  Google Scholar 

  19. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem 111:3806–3819. https://doi.org/10.1021/jp066539m

    Article  CAS  Google Scholar 

  20. Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev 7:171–187. https://doi.org/10.1002/lpor.201200003

    Article  CAS  Google Scholar 

  21. Hasannejad Z, Khosroshahi ME (2013) Synthesis and evaluation of time dependent optical properties of plasmonic-magnetic nanoparticles. Opt Mater 35:644–651. https://doi.org/10.1016/j.optmat.2012.10.019

    Article  CAS  Google Scholar 

  22. Khlebtsov B, Zharov V, Melnikov A, Tuchin V, Khlebtsov N (2006) Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17:5167–5179. https://doi.org/10.1088/0957-4484/17/20/022

    Article  CAS  Google Scholar 

  23. Hung X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693. https://doi.org/10.2217/17435889.2.5.681

    Article  Google Scholar 

  24. Rodríguez-Oliveros R, Sánchez-Gill JA (2012) Gold nanostars as thermoplasmonic nanoparticles for optical heating. Opt Express 20:621–626. https://doi.org/10.1364/OE.20.000621

    Article  CAS  Google Scholar 

  25. Liu Y, Kersey F, Register J, Parrott M (2015) Plasmonic gold nanostars for multi-modality sensing and diagnostics. Sensors 15:3706–3720. https://doi.org/10.3390/s150203706

    Article  CAS  Google Scholar 

  26. Zhou W, Gao X, Liu D, Chen X (2019) God nanoparticles in-vitro diagnostics 115:10575–10636. https://doi.org/10.1021/acs.chemrev.5b00100

    Article  CAS  Google Scholar 

  27. Ishigaki M, Ozaki Y (2020) Vibrational spectroscopy in protein research. Academic Press, pp 143–176

  28. Iosin M, Toderas F, Baldeck PL, Astilean S (2009) Study of protein-gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering. J Mol Struct 924:196–200. https://doi.org/10.1016/j.molstruc.2009.02.004

    Article  CAS  Google Scholar 

  29. Mandal G, Bardhan M, Ganguly T (2010) Interaction of bovine serum albumin and albumin-gold nanoconjugates with L-aspartic acid. A spectroscopic approach. Colloids Surf B 81:178–184. https://doi.org/10.1016/j.colsurfb.2010.07.002

    Article  CAS  Google Scholar 

  30. Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Chichester

    Book  Google Scholar 

  31. Eldin AB (2011) Near Infra Red spectroscopy. In: Akyar I (ed) Wide spectra of quality control. Intech Open, London, pp 237–247

    Google Scholar 

  32. Giacomelli CE, Bremer MGEG, Norde W (1999) ATR-FTIR study of IgG adsorbed on different silica surfaces. J Colloid Interface Sci 220:13–23. https://doi.org/10.1006/jcis.1999.6479

    Article  CAS  Google Scholar 

  33. Van Stokkum IHM, Lindsell H, Hadden JM, Haris PI, Chapman D, Bloemendal M (1995) Temperature-induced changes in protein structures studied by Fourier transform infrared spectroscopy and global analysis. Biochemistry 34:10508–10518. https://doi.org/10.1021/bi00033a024

    Article  Google Scholar 

  34. Izutsu K, Fujimaki Y, Kuwabara A, Hiyama Y, Yomota C, Aoyagi N (2006) Near-infrared analysis of protein secondary structure in aqueous solutions and freeze-dried solids. J Pharm Sci 95:781–789. https://doi.org/10.1002/jps.20580

    Article  CAS  Google Scholar 

  35. Tipson RS (1968) Infrared spectroscopy of carbohydrates: a review of the literature. NBS Publications, Washington, pp 1–12

    Book  Google Scholar 

  36. Bjerneld EJ, Földes-Papp Z, Käll M, Rigler R (2002) Single-molecule surface-enhanced Raman and fluorescence correlation spectroscopy of horseradish peroxidase. J Phys Chem B 106:1213–1218. https://doi.org/10.1021/jp012268y

    Article  CAS  Google Scholar 

  37. Johannessen C, Abdali S, White PC (2007) Resonance Raman optical activity and surface enhanced resonance Raman optical activity analysis of cytochrome c. J Phys Chem A 111:7771–7776. https://doi.org/10.1021/jp0705267

    Article  CAS  Google Scholar 

  38. Winuprasith T, Suphantharika M, McClements DJ, He L (2014) Spectroscopic studies of conformational changes of β-lactoglobulin adsorbed on gold nanoparticle surfaces. J Colloid Interface Sci 416:184–189. https://doi.org/10.1016/j.jcis.2013.11.006

    Article  CAS  Google Scholar 

  39. Vargas-Obieta E, Martínez-Espinosa JC, Martínez-Zerega BE, Jave-Suárez LF, Aguilar-Lemarroy A, González-Solís JL (2016) Breast cancer detection based on serum sample surface enhanced Raman spectroscopy. Lasers Med Sci 31:1317–1324. https://doi.org/10.1007/s10103-016-1976-x

    Article  Google Scholar 

  40. Ortiz-Dosal A, Loredo-García E, Álvarez-Contreras AG, Núñez-Leyva JM, Ortiz-Dosal LC, Kolosovas-Machuca ES, Young S (2021) Determination of the Immunoglobulin G spectrum by surface-enhanced Raman spectroscopy using quasispherical gold nanoparticles. J Nanomater 21. https://doi.org/10.1155/2021/8874193

  41. Szekeres GP, Kneipp J (2019) SERS probing of proteins in gold nanoparticle agglomerates. Front Chem 7:30. https://doi.org/10.3389/fchem.2019.00030

    Article  CAS  Google Scholar 

  42. Lambert JB, Shurvell HF (1987) Introduction to organic spectroscopy. Macmillan, New York, pp 174–177, 468

    Google Scholar 

  43. Macdonald IDG, Smith WE (1996) Orientation of cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir 12:706–713. https://doi.org/10.1021/la950256w

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to thank MIS Electronics Inc., Department of R&D for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad E. Khosroshahi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosroshahi, M.E., Patel, Y. & Chabok, R. Characterization of breast cancer antibody (anti-HER-II) conjugated on PEGylated gold nanourchin for active targeting. Gold Bull 55, 149–159 (2022). https://doi.org/10.1007/s13404-022-00316-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-022-00316-w

Keywords

Navigation