Log in

Utilizing a sustainable surfactant from Cucurbita pepo seeds for eco-friendly flotation of non-coking coal in sustainable energy applications

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Fatty acids are being explored as a promising collector in coal flotation as they consist of both polar head and non-polar aliphatic tails. In the present study, the fatty acid–rich oil extracted from Cucurbita pepo (Cp) seeds by Soxhlet extraction was used as a bio-based surfactant to reduce ash in non-coking coal by flotation. The FTIR and GCMS were used to investigate the functional groups and free fatty acid composition of the extracted oil respectively. The molecular conformation was identified using NMR spectroscopy. The extracted Cp oil was primarily composed of linoleic acid (64.17%) and oleic acid (11.54%). The extracted oil was utilized as a bio-based surfactant to float high ash non-coking coal, taking advantage of the oil’s fatty acid content. Taguchi’s design of experiments was used to optimize flotation process parameters such as collector dosage (extracted Cp oil), frother dosage (MIBC), and airflow rate. ANOVA analysis was conducted to determine the significance of the process parameters. It was observed that frother dosage played the most significant role in achieving optimal ash rejection, followed by collector dosage and airflow rate. The optimized conditions for combustible recovery were at airflow rate of 2.0 lpm, collector dosage of 3.5 ml, and frother dosage of 0.35 ml. For optimal combustible recovery (92.15) and separation efficiency (67.77), airflow rate had the highest impact, followed by collector and frother dosages. From the XRD analysis, it was found that the major gangue, namely, quartz and kaolinite present in the non-coking coal, were significantly reduced in the final concentrate (float). Thus, the oil extracted from the seeds of Cucurbita pepo can be used as a bio-based surfactant in high ash, non-coking coal flotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The available data and materials was provided in supporting information.

References

  1. Vasumathi N, Vijaya Kumar TV, Ratchambigai S et al (2016) Beneficiation of an Indian non-coking coal by column flotation. International Journal of Coal Science and Technology 3:206–214. https://doi.org/10.1007/s40789-016-0129-y

    Article  CAS  Google Scholar 

  2. IBM G of I (2023) Indian Minerals Yearbook 2021 60th Edition COAL & LIGNITE

  3. Yinfei Liaoa; Yijun Caoa; Zhongbo Hub; **uxiang Taoc (2015) A new preparation scheme for a difficult-to-float coking coal by column flotation following grinding. J South Afr Inst Min Metall 115:161–164

    Article  Google Scholar 

  4. Sis H, Ozbayoglu G, Sarikaya M (2004) Utilization of fine coal tailings by flotation using ionic reagents. Energy Sources 26:941–949. https://doi.org/10.1080/00908310490473237

    Article  CAS  Google Scholar 

  5. Jia R, Harris GH, Fuerstenau DW (2000) An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. Int J Miner Process 58:99–118. https://doi.org/10.1016/S0301-7516(99)00024-1

    Article  CAS  Google Scholar 

  6. Aktas Z, Woodburn ET (1995) The effect of non-ionic reagent adsorption and flotation performance of two low on the froth rank British. Powder Technol 83:149–158. https://doi.org/10.1016/0032-5910(94)02950-S

    Article  CAS  Google Scholar 

  7. Wen WW, Sun SC (1981) An Electrokinetic Study on the Oil Flotation of Oxidized Coal. Sep Sci Technol 16:1491–1521. https://doi.org/10.1080/01496398108058313

    Article  CAS  Google Scholar 

  8. Noroozi F, Bimakr M, Ganjloo A, Aminzare M (2021) A short time bioactive compounds extraction from Cucurbita pepo seed using continuous ultrasound-assisted extraction. J Food Measure Characteriz 15:2135–2145. https://doi.org/10.1007/s11694-021-00810-3

    Article  Google Scholar 

  9. Quast KB (2000) Review of hematite flotation using 12-carbon chain collectors. Miner Eng 13:1361–1376. https://doi.org/10.1016/S0892-6875(00)00119-9

    Article  CAS  ADS  Google Scholar 

  10. Quast K (2006) Flotation of hematite using C6–C18 saturated fatty acids. Miner Eng 19:582–597. https://doi.org/10.1016/j.mineng.2005.09.010

    Article  CAS  Google Scholar 

  11. Quast K (2015) Use of conditioning time to investigate the mechanisms of interactions of selected fatty acids on hematite Part II laboratory investigations. Miner Eng 79:301–305. https://doi.org/10.1016/j.mineng.2015.03.027

    Article  CAS  Google Scholar 

  12. Filippov LO, Foucaud Y, Filippova IV, Badawi M (2018) New reagent formulations for selective flotation of scheelite from a skarn ore with complex calcium minerals gangue. Miner Eng 123:85–94. https://doi.org/10.1016/j.mineng.2018.05.001

    Article  CAS  Google Scholar 

  13. Hanumantha Rao K, Forssberg KSE (1991) Mechanism of fatty acid adsorption in salt-type mineral flotation. Miner Eng 4:879–890. https://doi.org/10.1016/0892-6875(91)90071-3

    Article  Google Scholar 

  14. Kou J, Tao D, Xu G (2010) Fatty acid collectors for phosphate flotation and their adsorption behavior using QCM-D. Int J Miner Process 95:1–9. https://doi.org/10.1016/j.minpro.2010.03.001

    Article  CAS  Google Scholar 

  15. Abaka-Wood GB, Addai-Mensah J, Skinner W (2017) Selective flotation of rare earth oxides from hematite and quartz mixtures using oleic acid as a collector. Int J Miner Process 169:60–69. https://doi.org/10.1016/j.minpro.2017.10.002

    Article  CAS  Google Scholar 

  16. Li Y, **a W, Zhang N (2021) Efficiency and mechanism analysis of the flotation of anthracite coal using soybean oil as an alternative sustainable collector. Energy Sources, Part A: Recov Utiliz Environ Effects 43:2210–2217. https://doi.org/10.1080/15567036.2019.1644400

    Article  CAS  Google Scholar 

  17. Brandao P, Caires L, Queiroz D (1994) Vegetable lipid oil based collectors in the flotation of apatite ores. Miner Eng 7:917–925

    Article  CAS  Google Scholar 

  18. Alonso MI, Castaño C, Garcia AB (2000) Performance of vegetable oils as flotation collectors for the recovery of coal from coal fines wastes. Coal Preparation 21:411–420. https://doi.org/10.1080/07349340008945628

    Article  CAS  Google Scholar 

  19. Tesfaye B, Tefera T (2017) Extraction of essential oil from neem seed by using Soxhlet extraction methods. Int J Adv Eng Manag Sci 3:646–650. https://doi.org/10.24001/ijaems.3.6.5

    Article  Google Scholar 

  20. B Das PSR Reddy 2010 The utilization of non-coking coal by flotation using non-conventional reagents Energy Sources, Part A: Recov Utiliz Environ Effects 32 1784 1793 https://doi.org/10.1080/15567030902882968

  21. Bhosale P, Devikar D, Godase R et al (2022) Extraction and separation of custard apple seed oil as a natural pesticide. Int J Sci Res Eng Manag 06:1–9

    Google Scholar 

  22. Yang Z, Chang G, **a Y, et al (2021) Utilization of waste cooking oil for highly efficient recovery of unburned carbon from coal fly ash. J Clean Prod 282 https://doi.org/10.1016/j.jclepro.2020.124547

  23. Xu M, **ng Y, Cao Y, Gui X (2019) Waste colza oil used as renewable collector for low rank coal flotation. Powder Technol 344:611–616. https://doi.org/10.1016/j.powtec.2018.12.058

    Article  CAS  Google Scholar 

  24. Cook BK, Gibson CE (2023) A Review of fatty acid collectors: implications for spodumene flotation Minerals 13 https://doi.org/10.3390/min13020212

  25. Giwa SO, Muhammad M, Giwa A (2018) Utilizing orange peels for essential oil production. ARPN J Eng Appl Sci 13. https://www.academia.edu/73475608/Utilizing_Orange_Peels_for_Essential_Oil_Production

  26. YL BihShow Lou 2014 Gas chromatography-mass spectrometry analysis of photosensitive characteristics in citrus and herb essential oils J Chromatogr Separat Techn 06 https://doi.org/10.4172/2157-7064.1000261

  27. Ara KM, Raofie F (2016) Application of response surface methodology for the optimization of supercritical fluid extraction of essential oil from pomegranate (Punica granatum L.) peel. J Food Sci Technol 53:3113–3121. https://doi.org/10.1007/s13197-016-2284-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aziz ZAA, Ahmad A, Setapar SHM et al (2018) Essential oils: extraction techniques, pharmaceutical and therapeutic potential - a review. Curr Drug Metab 19:1100–1110. https://doi.org/10.2174/1389200219666180723144850

    Article  CAS  PubMed  Google Scholar 

  29. Cook CM, Lanaras T (2015) Essential oils: isolation, production and uses. In: Encyclopedia of Food and Health. Elsevier Inc., pp 552–557. https://doi.org/10.1016/B978-0-12-384947-2.00261-0

  30. Rajeswara Rao BR (2016) Essential oils in food preservation, flavor and safety. https://doi.org/10.1016/B978-0-12-416641-7.00001-8

  31. Gavahian M, Sastry S, Farhoosh R, Farahnaky A (2020) Ohmic heating as a promising technique for extraction of herbal essential oils: understanding mechanisms, recent findings, and associated challenges. In: Advances in Food and Nutrition Research. Academic Press Inc., pp 227–273. https://doi.org/10.1016/bs.afnr.2019.09.001

  32. Gokcol C, Dursun B, Alboyaci B, Sunan E (2009) Importance of biomass energy as alternative to other sources in Turkey. Energy Policy 37:424–431. https://doi.org/10.1016/j.enpol.2008.09.057

    Article  Google Scholar 

  33. Naik PK, Reddy PSR, Misra VN (2004) Optimization of coal flotation using statistical technique. Fuel Process Technol 85:1473–1485. https://doi.org/10.1016/j.fuproc.2003.10.005

    Article  CAS  Google Scholar 

  34. Tian Q, Wang H, Pan Y (2022) Associations of gangue minerals in coal flotation tailing and their transportation behaviors in the flotation process. ACS Omega 7:27542–27549. https://doi.org/10.1021/acsomega.2c02988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kumar PS, Sivrikaya O, Pradhan S, Nagannor PC (2021) Flotation performance analysis on coal washery rejects. Energy Geoscience 2:211–217. https://doi.org/10.1016/j.engeos.2021.04.001

    Article  Google Scholar 

  36. Bao X, Liu J, Wang S et al (2023) New insight into temperature effects on low-rank coal flotation using diesel as a collector. ACS Omega 8:15479–15487. https://doi.org/10.1021/acsomega.3c00774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rao SM, Rao PV, Choudhury BR (2000) Efficacy of gravity separation as an alternative to froth flotation for treating Jharia group coal fines. In: International Symposium on Processing of fines. NML Jamshedpur, pp 160–167. https://eprints.nmlindia.org/2908/1/160-167.PDF

  38. Kadagala MR, Suresh Nikkam SKT (2023) Application of Kerosene/ crude palm oil and their mixtures as collectors for flotation of oxidized coal fines and their performance analysis. Int J Coal Prep Util 43:1950–1975. https://doi.org/10.1080/19392699.2022.2146681

    Article  CAS  Google Scholar 

  39. Reşitoʇlu IA, Altinişik K, Keskin A (2015) The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technol Environ Policy 17:15–27. https://doi.org/10.1007/s10098-014-0793-9

    Article  CAS  Google Scholar 

  40. LTD. MMRP (2023) Pumpkin seed market: global industry analysis, trends, and forecast (2023–2029). https://www.maximizemarketresearch.com/market-report/global-pumpkin-seed-market/81364/

  41. atlasbig.com (2022) World pumpkin production by country. https://www.atlasbig.com/en-us/countries-pumpkin-production

  42. Radić I, Mirić M, Mijović M et al (2021) Protective effects of pumpkin (Cucurbita pepo L.) seed oil on rat liver damage induced by chronic alcohol consumption. Arch Biol Sci 73:123–133. https://doi.org/10.2298/ABS201205008R

    Article  Google Scholar 

  43. Redrouthu R, Sundramurthy VP, Zergu B (2020) Extraction of essential oils from pumpkin seeds RSM based process modeling, optimization and oil characterization. Int J Eng Adv Technol 9:1787–1797. https://doi.org/10.35940/ijeat.d8420.049420

    Article  Google Scholar 

  44. Fan S, Hu Y, Li C, Liu Y (2014) Optimization of preparation of antioxidative peptides from pumpkin seeds using response surface method. PLoS ONE 9:1–6. https://doi.org/10.1371/journal.pone.0092335

    Article  CAS  Google Scholar 

  45. Bavec F, Gril L, Grobelnik-Mlakar S, Bavec M (2002) Seedlings of oil pumpkins as an alternative to seed sowing: yield and production costs. Bodenkultur 53:39–43

    Google Scholar 

  46. Reddy BD& PSR 2010 The utilization of non-coking coal by flotation using non-conventional reagents Energy Sources, Part A: Recov Utiliz Environ Effects 32 1784 1793 https://doi.org/10.1080/15567030902882968

  47. Saracoglu N, Gunduz G (2009) Wood pellets - tomorrow’s fuel for Europe. Energy Sources, Part A: Recov Utiliz Environ Effects 31:1708–1718. https://doi.org/10.1080/15567030802459677

    Article  CAS  Google Scholar 

  48. V SRD and VVG (2014) Effect of pre-treatment on solvents extraction and physico-chemical properties of castor seed oil J Renew Sustain Energy 6 https://doi.org/10.1063/1.4901542

  49. Rojo-Gutiérrez E, Buenrostro Figueroa Jose, Natividad Reyna, Romero Rubi, Sepulveda D.R, Baeza-Jiménez R (2020) Effect of different extraction methods on cottonseed oil yield Efecto de diferentes métodos sobre el rendimiento de extracción de aceite de semilla de algodón. Revista Mexicana de Ingeniería Química 19:385–394. https://doi.org/10.24275/rmiq/Alim1704

    Article  Google Scholar 

  50. Mustapha AN, Zhang Y, Zhang Z, Ding Y, Qingchun Yuan YL (2021) Taguchi and ANOVA analysis for the optimization of the microencapsulation of a volatile phase change material. J Market Res 11:667–680. https://doi.org/10.1016/j.jmrt.2021.01.025

    Article  CAS  Google Scholar 

  51. Chauhan, Balendra Vir & Tiwari, Shailendra & Singh, Tarun & Chaudhary P (2017) Parameter design for optimum percentage yield for bio- diesel from cottonseed using doe (Taguchi technique). Int Res J Eng Technol 3 https://doi.org/10.13140/RG.2.2.26132.24961

  52. Fraley S, Oom M, Ben Terrien JZ (2007) Chapter 14. Design of Experiments. In: Woolf PJ. (ed) Chemical Process Dynamics and Controls. Openmichigan, pp 1348–1400. https://open.umich.edu/sites/default/files/downloads/chemical_process_dynamics_and_controls-book_2.pdf

  53. Kumari A, Tripathy A, Rayasam V (2021) Performance characterization and misplacement studies of liquid–solid fluidized bed density separator for coal beneficiation using Taguchi-ANOVA method. Part Sci Technol 39:436–448. https://doi.org/10.1080/02726351.2020.1751357

    Article  CAS  Google Scholar 

  54. Naresh S, Sunil KS, Suma A, Ashika BD, C. L. Roy SB, (2018) GCMS and FTIR analysis on the methanolic extract of red Vitis vinifera peel. World J Pharm Sci 7:1110–1123

    Google Scholar 

  55. P. Ragavendran, D. Sophia, C. Arul Raj VKG (2011) Functional group analysis of various extracts of Aerva lanata ( L .,) by FTIR Spectrum Pharmacologyonline 1 : 358–364 ( 2011 ) Newsletter. Pharmacologyonline 358–364

  56. Palconite CL, Edrolin AC, Lustre SNB et al (2018) Optimization and characterization of bio-oil produced from Ricinus communis seeds via ultrasonic-assisted solvent extraction through response surface methodology. Sustain Environ Res. https://doi.org/10.1016/j.serj.2018.07.006

    Article  Google Scholar 

  57. Deepashree CL, Komal J, Kumar AGDP (2012) FTIR spectroscopic studies on Cleome Gynandra comparative analysis of functional group before and after extraction. Roman J Biophys 22(137):143

    Google Scholar 

  58. Nespeca MG, Hatanaka RR, Flumignan DL, De Oliveira JE (2018) Rapid and Simultaneous prediction of eight diesel quality parameters through ATR-FTIR analysis. J Anal Methods Chem 2018 https://doi.org/10.1155/2018/1795624

  59. Younis YMH, Ghirmay S, Al-Shihry SS (2000) African Cucurbita pepo L.: properties of seed and variability in fatty acid composition of seed oil. Phytochemistry 54:71–75. https://doi.org/10.1016/S0031-9422(99)00610-X

    Article  CAS  PubMed  Google Scholar 

  60. Rezig L, Chouaibi M, Msaada K, Hamdi S (2012) Chemical composition and profile characterization of pumpkin (Cucurbita maxima) seed oil. Ind Crops Prod 37:82–87. https://doi.org/10.1016/j.indcrop.2011.12.004

    Article  CAS  Google Scholar 

  61. Orsavova J, Misurcova L, Vavra Ambrozova J et al (2015) Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int J Mol Sci 16:12871–12890. https://doi.org/10.3390/ijms160612871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang W, Pan YG, Huang W et al (2019) Optimized ultrasonic-assisted extraction of papaya seed oil from Hainan/Eksotika variety. Food Sci Nutr 7:2692–2701. https://doi.org/10.1002/fsn3.1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Skiera C, Steliopoulos P, Kuballa T et al (2012) Determination of free fatty acids in edible oils by 1H NMR spectroscopy. Lipid Technol 24:279–281. https://doi.org/10.1002/lite.201200241

    Article  CAS  Google Scholar 

  64. Santhosh N, Kempaiah UN, Sajjan G, Gowda AC (2017) Fatigue behavior of silicon carbide and fly ash dispersion strengthened high performance hybrid Al 5083 metal matrix composites. J Min Mater Characteriz Eng 05:274–287. https://doi.org/10.4236/jmmce.2017.55023

    Article  CAS  Google Scholar 

  65. Apostol L, Berca L, Mosoiu C et al (2018) Partially defatted pumpkin (Cucurbita maxima) seeds - a rich source of nutrients for use in food products. Revista de Chimie 69:1398–1402. https://doi.org/10.37358/rc.18.6.6332

  66. Dey S, Pani S (2012) Effective processing of low-volatile medium coking coal fines of Indian origin using different process variables of flotation. Int J Coal Prep Util 32:253–264. https://doi.org/10.1080/19392699.2012.699009

    Article  CAS  Google Scholar 

  67. Bradshaw, (1998) Synergistic interactions between reagents in sulphide flotation. J South Afr Inst Min Metall 98:189–193

    Google Scholar 

  68. Rao SR, Padmanabhan G (2012) Application of Taguchi methods and ANOVA in optimization of process parameters for metal removal rate in electrochemical machining of Al/5% SiC composites. Int J Eng Res Appl 2:192–197

    Google Scholar 

  69. Ayeni AO, Hymore FK, Mudliar SN et al (2013) Hydrogen peroxide and lime based oxidative pretreatment of wood waste to enhance enzymatic hydrolysis for a biorefinery : process parameters optimization using response surface methodology. Fuel 106:187–194. https://doi.org/10.1016/j.fuel.2012.12.078

    Article  CAS  Google Scholar 

  70. Chatterjee S, Kumar A, Basu S, Dutta S (2012) Application of response surface methodology for Methylene Blue dye removal from aqueous solution using low cost adsorbent. Chem Eng J 181–182:289–299. https://doi.org/10.1016/j.cej.2011.11.081

    Article  CAS  Google Scholar 

  71. Kumar TB, Panda A, Kumar Sharma G et al (2020) Taguchi DoE and ANOVA: a systematic perspective for performance optimization of cross-coupled channel length modulation OTA. AEU-Int J Electron C 116:153070. https://doi.org/10.1016/j.aeue.2020.153070

  72. Shi C, Cheng G, Wang S (2019) Optimization of coal washery tailings by flotation process. Energies 12:3956. https://doi.org/10.3390/en12203956

    Article  CAS  Google Scholar 

  73. Ghorai S, Ghosh B, Chandaliya VK, Singh R, Dash PSMD (2019) Difference in structural chemistry of non-coking and coking coal using acid treatment demineralization technique. Int J Coal Prep Util 42:788–808. https://doi.org/10.1080/19392699.2019.1664482

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Ms. I. Cassandra Austen, wishes to express her profound gratitude to Dr. Mariazeena Johnson, the Chancellor of Sathyabama Institute of Science and Technology (deemed to be University), Chennai, for generously providing a Research Fellowship during the course of this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: T. V. Vijayakumar and N. Vasumathi; methodology: I. Cassandra Austen, Ajita Kumari, and G. Mousumi; software: Ajita Kumari; validation: Ajita Kumari and Mousumi; writing (original draft preparation): I. Cassandra Austen, N. Vasumathi and T. V. Vijayakumar and K. Chennakesavulu; writing (review and editing): T. Anurag Kumar and G. Ramanjaneya Reddy; supervision: N. Vasumathi and K. Chennakesavulu; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to K. Chennakesavulu.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13514 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

I, C.A., Chennakesavulu, K., Reddy, G.R. et al. Utilizing a sustainable surfactant from Cucurbita pepo seeds for eco-friendly flotation of non-coking coal in sustainable energy applications. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05359-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05359-x

Keywords

Navigation