Log in

Role of corn cob waste biosilica on mechanical, wear, thermal conductivity, and water absorption properties of essential oil, bamboo fiber-polyester food packaging composite material

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study investigates the influence of corn cob waste biosilica on the mechanical, wear, thermal conductivity, and water absorption properties of an essential oil and bamboo fiber-reinforced polyester food packaging composite material. The production process involved blending, extrusion, and compression molding techniques. The resulting samples were subjected to characterization as per ASTM standards. Among composites developed, R5 emerged as a standout performer, provided exceptional mechanical properties, including a tensile strength of 84 MPa, a flexural strength of 127 MPa, and an impact resistance of 3.74 J. Additionally, composite R6 displayed noteworthy thermal conductivity at 0.358 W/mK, while R5 demonstrated a controlled increase in water absorption at 2.7%. Notably, the R6 composite exhibited exceptional wear resistance, evidenced by a specific wear rate of 0.011 mm3/Nm and a coefficient of friction of 0.42. This research underscores the potential of corn cob biosilica in enhancing the multifaceted properties of food packaging composites, ultimately contributing to the development of robust and efficient packaging solutions for the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data are within manuscript.

References

  1. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581. https://doi.org/10.1016/j.jclepro.2017.10.101

    Article  Google Scholar 

  2. Yashas Gowda TG, Sanjay MR, Subrahmanya Bhat K, Madhu P, Senthamaraikannan P, Yogesha B (2018) Polymer matrix-natural fiber composites: an overview. Cogent Engineering 5(1):1446667. https://doi.org/10.1080/23311916.2018.1446667

    Article  Google Scholar 

  3. Madhu P, Sanjay MR, Senthamaraikannan P, Pradeep S, Saravanakumar SS, Yogesha B (2018) A review on synthesis and characterization of commercially available natural fibers: Part-I. Journal of Natural Fibers. https://doi.org/10.1080/15440478.2018.1453433

    Article  Google Scholar 

  4. Jagadeesh P, Ningappa VSH, Puttegowda M, Girijappa YGT, Rangappa SM, Khan MR,...& Siengchin S (2021) Pongamia pinnata shell powder filled sisal/kevlar hybrid composites: physicomechanical and morphological characteristics. Polymer Composites, 42(9), 4434–4447. https://doi.org/10.1002/pc.26160

  5. Shravanabelagola Nagaraja Setty VK, Govardhan G, MavinkereRangappa S, Siengchin S (2021) Raw and chemically treated bio-waste filled (Limoniaacidissima shell powder) vinyl ester composites: physical, mechanical, moisture absorption properties, and microstructure analysis. J Vinyl Additive Technol 27(1):97–107. https://doi.org/10.1002/vnl.21787

    Article  Google Scholar 

  6. Kumaran P, Mohanamurugan S, Madhu S, Vijay R, Lenin Singaravelu D, Vinod A,...& Siengchin S (2020) Investigation on thermo-mechanical characteristics of treated/untreated Portunussanguinolentus shell powder-based jute fabrics reinforced epoxy composites. Journal of Industrial Textiles, 50(4), 427–459. https://doi.org/10.1177/1528083719832851

  7. Mohan S, Panneerselvam K (2022) Development of polylactic acid based functional films reinforced with ginger essential oil and curcumin for food packaging applications. J Food Meas Charact 16(6):4703–4715. https://doi.org/10.1007/s11694-022-01551-7

    Article  Google Scholar 

  8. Subbiah R, Kaliappan SVB, Patil PP (2022) Effect of nanosilica on mechanical, thermal, fatigue, and antimicrobial properties of cardanol oil/sisal fiber reinforced epoxy composite. Polym Compos 43(11):7940–7951. https://doi.org/10.1002/pc.26930

    Article  Google Scholar 

  9. Ben Samuel J, Julyes Jaisingh S, Ramadoss R, Maridurai T (2023) Mechanical, wear and fatigue behaviour of neem oil and nanosilica toughened areca fibre reinforced epoxy resin composite. Silicon 15(8):3525–3533. https://doi.org/10.1007/s12633-022-02281-7

    Article  Google Scholar 

  10. Selvamurugan TS, & Balasubramanian P (2023) Development of almond shell powder and palm kernel fibre–reinforced cardanol oil toughened epoxy resin hybrid composites: mechanical, wear, and antimicrobial properties. Biomass Conversion and Biorefinery, 1–11. https://doi.org/10.1007/s13399-023-04864-9

  11. Radhakrishnan S, Khan A, Dwivedi SP, Sharma B, Gupta S, Gupta P, & Chaudhary V (2023) Studies on mechanical, thermal, and water immersion of plant and animal wastage nanofiller–based bio-fiber-reinforced composites. Biomass Convers Biorefinery, 1–22. https://doi.org/10.1007/s13399-023-04788-4

  12. Oluremi JR, Raheem AA, Balogun RO, & Moshood AA (2023) Early strength development assessment of concrete produced from cement replaced with nano silica activated Corn Cob Ash. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2023.02.191

  13. Andreola F, Martín MI, Ferrari AM, Lancellotti I, Bondioli F, Rincón JM,...& Barbieri L (2013) Technological properties of glass-ceramic tiles obtained using rice husk ash as silica precursor. Ceramics International, 39(5), 5427–5435. https://doi.org/10.1016/j.ceramint.2012.12.050

  14. Shafiei N, Nasrollahzadeh M, Iravani S (2021) Green synthesis of silica and silicon nanoparticles and their biomedical and catalytic applications. Comments Inorg Chem 41(6):317–372. https://doi.org/10.1080/02603594.2021.1904912

    Article  Google Scholar 

  15. Tessema B, Gonfa G, Mekuria Hailegiorgis S, & Venkatesa Prabhu S (2023) An overview of current and prognostic trends on synthesis, characterization, and applications of biobased silica. Adv Mater Sci Eng. https://doi.org/10.1155/2023/4865273

  16. Sathish Kumar S, Manimaran R, Anbukarasi K (2022) Mechanical, wear and fatigue behavior of silane-treated corncob biosilica toughened epoxy resin composite reinforced with prickly pear short fibers. Polym Compos 43(10):6998–7006. https://doi.org/10.1002/pc.26761

    Article  Google Scholar 

  17. Krishnamoorthy N, Nagabhooshanam N, Rao PKV, Verma R, Kumar DS, Sankar GA,...& Mohanavel V (2023) A characterization study on toughening natural fibre composites using functionalized barely husk biosilica. Biomass Convers Biorefinery, 1–8. https://doi.org/10.1007/s13399-023-04873-8

  18. Sivamurugan P, Selvam R, Pandian M, Ashraf M S., Chakrapani IS, Thanikasalam A,... & Ramesh B (2022) Extraction of novel biosilica from finger millet husk and its coconut rachilla-reinforced epoxy biocomposite: mechanical, thermal, and hydrophobic behaviour. Biomass Conversion and Biorefinery, 1–9. https://doi.org/10.1007/s13399-022-03342-y

  19. Elanthikkal S, Mohamed HH, Alomair NA (2023) Extraction of biosilica from date palm biomass ash and its application in photocatalysis. Arab J Chem 16(3):104522. https://doi.org/10.1016/j.arabjc.2022.104522

    Article  Google Scholar 

  20. Lakshmipathi AR, Satishkumar P, Nagabhooshanam N, Rao PKV, Kumar DS, Chakravarthy AK,...&Mohanavel V (2023) Shear strength, wear, thermal conductivity, and hydrophobicity behavior of fox millet husk biosilica and Amaranthus dubius stem fiber–reinforced epoxy composite: a concept of biomass conversion. Biomass Conversion and Biorefinery, 1–9. https://doi.org/10.1007/s13399-023-04854-x

  21. Singh SSSS, Madhu S (2023) Enhancement of tensile strength of bamboo fibre reinforced titanium laminate by addition of portunus filler compared with bamboo titanium composite. Mater Today: Proc 79:127–131. https://doi.org/10.1016/j.matpr.2022.10.084

    Article  Google Scholar 

  22. Barman P, Dutta PP, Bardalai M, & Dutta PP (2023) Experimental investigation on bamboo fiber reinforced epoxy polymer composite materials developed through two different techniques. Proceedings of the Institution of Mechanical Engineers, Part C: J Mech Eng Sci, 09544062231195474. https://doi.org/10.1177/09544062231195474

  23. Muralidaran VM, Natrayan L, Kaliappan S, & Patil PP (2023) Grape stalk cellulose toughened plain weaved bamboo fiber-reinforced epoxy composite: load bearing and time-dependent behavior. Biomass Conversion and Biorefinery, 1–8. https://doi.org/10.1007/s13399-022-03702-8

  24. Rashid B, Jawaid M, Fouad H, Saba N, Awad S, Khalaf E, Sain M (2022) Improving the thermal properties of olive/bamboo fiber-based epoxy hybrid composites. Polym Compos 43(5):3167–3174. https://doi.org/10.1002/pc.26608

    Article  Google Scholar 

  25. Alshahrani H, Prakash VA (2022) Mechanical, thermal, viscoelastic and hydrophobicity behavior of complex grape stalk lignin and bamboo fiber reinforced polyester composite. Int J Biol Macromol 223:851–859. https://doi.org/10.1016/j.ijbiomac.2022.10.272

    Article  Google Scholar 

  26. Pulikkalparambil H, Saravana Kumar M, Babu A, Ayyappan V, Tengsuthiwat J, Rangappa SM, &Siengchin S (2023) Effect of graphite fillers on woven bamboo fiber-reinforced epoxy hybrid composites for semistructural applications: fabrication and characterization. Biomass Convers Biorefinery, 1–17. https://doi.org/10.1007/s13399-023-03811-y

  27. Aruchamy K, Mylsamy B, Palaniappan SK, Subramani SP, Velayutham T, Rangappa S M, &Siengchin S (2023) Influence of weave arrangements on mechanical characteristics of cotton and bamboo woven fabric reinforced composite laminates. J Reinforced Plast Compos, 07316844221140350. https://doi.org/10.1177/07316844221140350

  28. Prakash VA, Viswanthan R (2019) Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite. Compos A Appl Sci Manuf 118:317–326. https://doi.org/10.1016/j.compositesa.2019.01.008

    Article  Google Scholar 

  29. Dinesh T, Kadirvel A, Hariharan P (2020) Thermo-mechanical and wear behaviour of surface-treated pineapple woven fibre and nano-silica dispersed mahua oil toughened epoxy composite. Silicon 12:2911–2920. https://doi.org/10.1007/s12633-020-00387-4

    Article  Google Scholar 

  30. Bennet C, Ra**i N, Jappes JW, Siva I, Sreenivasan VS, Amico SC (2015) Effect of the stacking sequence on vibrational behavior of Sansevieria cylindrica/coconut sheath polyester hybrid composites. J Reinf Plast Compos 34(4):293–306. https://doi.org/10.1177/0731684415570683

    Article  Google Scholar 

  31. Haque MR, Sajib KH, Haque MM, Zahura FT, Hasan MA, Ahmed SSU,...& Gafur MA (2023) Mechanical characterization of banana-nylon fibre reinforced Vinyl ester composites. Adv Mater Proc Technol, 1–20. https://doi.org/10.1080/2374068X.2023.2264573

  32. Vinod A, Sanjay MR, Suchart S, Jyotishkumar P (2020) Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod 258:120978. https://doi.org/10.1016/j.jclepro.2020.120978

    Article  Google Scholar 

  33. Manimaran P, Senthamaraikannan P, Sanjay MR, Marichelvam MK, Jawaid M (2018) Study on characterization of Furcraeafoetida new natural fiber as composite reinforcement for lightweight applications. Carbohyd Polym 181:650–658. https://doi.org/10.1016/j.carbpol.2017.11.099

    Article  Google Scholar 

  34. Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Siengchin S, Jawaid M,...& Parameswaranpillai J (2019) Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. Int J Biol Macromol, 125, 99–108. https://doi.org/10.1016/j.ijbiomac.2018.12.056

  35. Liu Y, Ming S, Zhou Y, Qu J (2023) Synthesis and properties of UV-curable star-shaped polyester. Polym Adv Technol 34(9):2851–2861. https://doi.org/10.1002/pat.6103

    Article  Google Scholar 

  36. Muñoz-Gimena PF, Oliver-Cuenca V, Peponi L, López D (2023) A review on reinforcements and additives in starch-based composites for food packaging. Polymers 15(13):2972. https://doi.org/10.3390/polym15132972

    Article  Google Scholar 

  37. Embirsh HSA, Stajčić I, Gržetić J, Mladenović IO, Anđelković B, Marinković A, Vuksanović MM (2023) Synthesis, characterization and application of biobased unsaturated polyester resin reinforced with unmodified/modified biosilica nanoparticles. Polymers 15(18):3756. https://doi.org/10.3390/polym15183756

    Article  Google Scholar 

  38. Sathish T, Jagadeesh P, Rangappa SM, Siengchin S (2022) Mechanical and thermal analysis of coir fiber reinforced jute/bamboo hybrid epoxy composites. Polym Compos 43(7):4700–4710. https://doi.org/10.1002/pc.26722

    Article  Google Scholar 

  39. Yorseng K, Rangappa SM, Parameswaranpillai J, Siengchin S (2022) Towards green composites: bioepoxy composites reinforced with bamboo/basalt/carbon fabrics. J Clean Prod 363:132314. https://doi.org/10.1016/j.jclepro.2022.132314

    Article  Google Scholar 

  40. Acosta S, Chiralt A, Santamarina P, Rosello J, González-Martínez C, Cháfer M (2016) Antifungal films based on starch-gelatin blend, containing essential oils. Food Hydrocolloids 61:233–240. https://doi.org/10.1016/j.foodhyd.2016.05.008

    Article  Google Scholar 

  41. Quan W, Huang W, An Y, Miao X, Chen Z (2023) The effect of natural bamboo fiber and basalt fiber on the properties of autoclaved aerated concrete. Constr Build Mater 377:131153. https://doi.org/10.1016/j.conbuildmat.2023.131153

    Article  Google Scholar 

  42. Sanjay MR, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohyd Polym 207:108–121. https://doi.org/10.1016/j.carbpol.2018.11.083

    Article  Google Scholar 

  43. Hu Y, He Y, Zhang Z, Wen D (2019) Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage. Sol Energy Mater Sol Cells 192:94–102. https://doi.org/10.1016/j.solmat.2018.12.019

    Article  Google Scholar 

  44. Shin D, Banerjee D (2011) Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. Int J Heat Mass Transf 54(5–6):1064–1070. https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.017

    Article  Google Scholar 

  45. Alshahrani H, & Arun Prakash VR (2023) Development of environmental friendly biocomposites using domestic discarded wastes as potential fibre and filler. Biomass Convers Biorefinery, 1–12. https://doi.org/10.1007/s13399-023-04926-y

  46. Mahmud SH, Das SC, Mollah MZI, Ul-Hoque MM, Al-Mugren KS, Faruque MRI, Khan RA (2023) Thermoset-polymer matrix composite materials of jute and glass fibre reinforcements: radiation effects determination. J Market Res 26:6623–6635. https://doi.org/10.1016/j.jmrt.2023.08.298

    Article  Google Scholar 

  47. Członka S, Strąkowska A, Strzelec K, Kairytė A, Kremensas A (2020) Bio-based polyurethane composite foams with improved mechanical, thermal, and antibacterial properties. Materials 13(5):1108. https://doi.org/10.3390/ma13051108

    Article  Google Scholar 

  48. Alshahrani H, VR AP (2023) Electromagnetic interference shielding behavior of hybrid nano Fe3O4/lychee biomass carbon quantum dots-PVA composite at high-frequency bands. J Mater Sci: Mater Electro 34(29):1988. https://doi.org/10.1007/s10854-023-11418-2

    Article  Google Scholar 

  49. Khan MK, Alshahrani H, & Arun Prakash VR (2023) Effect of grid pattern and infill ratio on mechanical, wear, fatigue and hydrophobic behaviour of abaca bracts biocarbon-ABS biocomposites tailored using 3D printing. Biomass Convers Biorefinery, 1–10. https://doi.org/10.1007/s13399-023-05196-4

  50. Alshahrani H, & Arun Prakash VR (2023) Load bearing investigations on novel Acrylonitrile butadiene styrene‐carbon quantum dots 3D printed core/bamboo fiber polyester sandwich composite for structural applications.Polym Composites. https://doi.org/10.1002/pc.27972

  51. Abdul Karim MR, Tahir D, Hussain A, UlHaq E, Khan KI (2020) Sodium carbonate treatment of fibres to improve mechanical and water absorption characteristics of short bamboo natural fibres reinforced polyester composite. Plast, Rubber Composites 49(10):425–433. https://doi.org/10.1080/14658011.2020.1768336

    Article  Google Scholar 

  52. Guan M, An X, Liu H (2019) Cellulose nanofiber (CNF) as a versatile filler for the preparation of bamboo pulp based tissue paper handsheets. Cellulose 26:2613–2624. https://doi.org/10.1007/s10570-018-2212-6

    Article  Google Scholar 

  53. Arun Prakash VR, Xavier JF, Ramesh G, Maridurai T, Kumar KS, Raj RBS (2022) Mechanical, thermal and fatigue behaviour of surface-treated novel Caryotaurensfibre–reinforced epoxy composite. Biomass Convers Biorefinery 12(12):5451–5461. https://doi.org/10.1007/s13399-020-00938-0

    Article  Google Scholar 

  54. Hou Z, Liu X, Tian M, Zhang X, Qu L, Fan T, Miao J (2023) Smart fibers and textiles for emerging clothe-based wearable electronics: materials, fabrications and applications. J Mater Chem 11(33):17336–17372

    Article  Google Scholar 

  55. Rajadurai A (2016) Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite. Appl Surf Sci 384:99–106. https://doi.org/10.1016/j.apsusc.2016.04.185

    Article  Google Scholar 

  56. Ding Y, Liu T, Ma Y, Yang C, Shi C, Cao Y, Zhang J (2023) Study on the milling machinability of bamboo-based fiber composites. Forests 14(9):1924. https://doi.org/10.3390/f14091924

    Article  Google Scholar 

  57. Balreddy MS, Nethra P, Naganna SR (2023) Performance evaluation of open-graded bituminous concrete modified with natural fibers. Sustainability 15(15):11952. https://doi.org/10.3390/su151511952

    Article  Google Scholar 

  58. Prakash VA, Bourchak M, Alshahrani H, Juhany KA (2023) Development of cashew nut shell lignin-acrylonitrile butadiene styrene 3D printed core and industrial hemp/aluminized glass fiber epoxy biocomposite for morphing wing and unmanned aerial vehicle applications. Int J Biol Macromol 253:127068. https://doi.org/10.1016/j.ijbiomac.2023.127068

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Eswaran A. and Giri R.: concept, funding, and research work. N. Venkateshwaran: concept and research work. Sekar S.: concept and research work.

Corresponding author

Correspondence to A. Eswaran.

Ethics declarations

Ethical approval

NA.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eswaran, A., Giri, R., Venkateshwaran, N. et al. Role of corn cob waste biosilica on mechanical, wear, thermal conductivity, and water absorption properties of essential oil, bamboo fiber-polyester food packaging composite material. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05281-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05281-2

Keywords

Navigation