Log in

Harnessing valorization potential of whey permeate for D-lactic acid production using lactic acid bacteria

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Global milk production has increased by 59% since 1988, reaching 944 million tonnes in 2023. This surge has resulted in an annual by-product, whey, totalling 200 million tonnes. Despite half of this whey being utilized in the food and pharmaceutical sectors, significant quantities are discarded, posing environmental challenges due to its high biological oxygen demand. Whey proteins and lipids are recovered from whey, and the resultant whey permeate stream is rich in lactose is a viable carbon source for value-added biochemical. D(-)lactic acid (DLA) is a versatile organic acid molecule widely used in the synthesis of thermostable biodegradable polymers viz., polylactic acid (PLA). However, the DLA market faces constraints; downstream demand is unsaturated, and upstream production is restricted, leading to elevated costs and posing challenges to its growth and profitability, which affect PLA manufacturing. This review study addresses a novel techno-economic approach involving strategies for genetic engineering of lactic acid bacteria and process intensification towards efficient valorization of whey permeate into DLA. This review enumerates a circular bioeconomy approach offering both environmental benefits and revenue opportunities for the dairy sector, revolutionizing by-product utilization and enhancing the industry’s sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BOD:

Biological oxygen demand

BSA:

Bovine serum albumin

CAGR:

Compound annual growth rate

COD:

Chemical oxygen demand

CRISPR:

Clustered regularly interspaced short palindromic repeats

DLA:

D-lactic acid

FDA:

Food and Drug Administration

GRAS:

Generally Recognized as Safe

HFLAB:

Homofermentative lactic acid bacteria

HPLC:

High-performance liquid chromatography

IgG:

Immunoglobulins

LAB:

Lactic acid bacteria

Ldh:

Lactate dehydrogenase

LF:

Lactoferrin

LPO:

Lactoperoxidase

MPC:

Milk protein concentrate

MWCO:

Molecular weight cutoff

NAD:

Nicotinamide adenine dinucleotide

NADH:

Nicotinamide adenine dinucleotide (NAD) + hydrogen (H)

NCBI:

National Centre for Biotechnology Information

NIRS:

Near-infrared spectroscopy

MS:

Mass spectrometry

PDLA:

Poly-D-lactic acid

PLA:

Polylactic acid

PLLA:

Poly-L-lactic acid

SCP:

Single cell protein

SMP:

Skim milk powder

UF:

Ultrafiltration

USD:

United States dollar

References

  1. Singh DP, Dwevedi A (2019) Production of clean energy by green ways. Solutions to Environmental Problems Involving Nanotechnology and Enzyme Technology, pp 49–90

    Google Scholar 

  2. Guddaraddi A, Singh A, Amrutha G et al (2023) Sustainable biofuel production from agricultural residues an eco-friendly approach: a review. Int J Environ Clim Change 13:2905–2914

    Article  Google Scholar 

  3. Ahmad T, Aadil RM, Ahmed H et al (2019) Treatment and utilization of dairy industrial waste: a review. Trends Food Sci Technol 88:361–372

    Article  Google Scholar 

  4. Pilarska AA, Pilarski K (2023) Bioenergy generation from different types of waste by anaerobic digestion. Energies 16(16):6919. https://doi.org/10.3390/EN16196919

    Article  Google Scholar 

  5. Permana I, Sudirja R, Jupesta J (2023) Potential of vermifiltration technique to reduce chemical oxygen demand, biological oxygen demand, and total suspended solid of farm dairy effluent in develo** countries: case of Indonesian farm dairy industry. Green and Low-Carbon Economy. https://doi.org/10.47852/BONVIEWGLCE3202933

    Book  Google Scholar 

  6. Espíndola JC, Mierzwa JC, Amaral MCS, De Andrade LH (2023) Water reuse through membrane technologies for a dairy plant using water pinch simulation software. Sustainability 15:2540. https://doi.org/10.3390/su15032540

    Article  Google Scholar 

  7. Zotta T, Solieri L, Iacumin L et al (2020) Valorization of cheese whey using microbial fermentations. Appl Microbiol Biotechnol 104:2749–2764

    Article  Google Scholar 

  8. Lappa IK, Papadaki A, Kachrimanidou V et al (2019) Cheese whey processing: integrated biorefinery concepts and emerging food applications. Foods 8:347

    Article  Google Scholar 

  9. Eskandar K (2023) Revolutionizing biotechnology and bioengineering: unleashing the power of innovation. Artic J Appl Biotechnol Bioeng. https://doi.org/10.15406/jabb.2023.10.00332

  10. Chandra R, Castillo-Zacarias C, Delgado P, Parra-Saldívar R (2018) A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index. J Clean Prod 183:1184–1196

    Article  Google Scholar 

  11. Shete BS, Shinkar NP (2013) Dairy industry wastewater sources, characteristics & its effects on environment. Int J Curr Eng Technol 3:1611–1615

    Google Scholar 

  12. Arvanitoyannis IS, Giakoundis A (2006) Current strategies for dairy waste management: a review. Crit Rev Food Sci Nutr 46:379–390

    Article  Google Scholar 

  13. Kushwaha JP, Srivastava VC, Mall ID (2011) An overview of various technologies for the treatment of dairy wastewaters. Crit Rev Food Sci Nutr 51:442–452

    Article  Google Scholar 

  14. Slavov AK (2017) Dairy wastewaters–general characteristics and treatment possibilities—a review. Food Technol Biotechnol 55:14–28

    Google Scholar 

  15. Roufou S, Griffin S, Katsini L et al (2021) The (potential) impact of seasonality and climate change on the physicochemical and microbial properties of dairy waste and its management. Trends Food Sci Technol 116(2021):1–10

  16. Joshiba GJ, Kumar PS, Femina CC et al (2019) Critical review on biological treatment strategies of dairy wastewater. Desalination Water Treat 160:94–109

    Article  Google Scholar 

  17. Goli A, Shamiri A, Khosroyar S et al (2019) A review on different aerobic and anaerobic treatment methods in dairy industry wastewater. J Environ Treat Tech 6:113–141

    Google Scholar 

  18. Porwal HJ, Mane AV, Velhal SG (2015) Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Resour Ind 9:1–15

    Article  Google Scholar 

  19. Danalewich JR, Papagiannis TG, Belyea RL et al (1998) Characterization of dairy waste streams, current treatment practices, and potential for biological nutrient removal. Water Res 32:3555–3568. https://doi.org/10.1016/S0043-1354%2898%2900160-2

    Article  Google Scholar 

  20. Ryan MP, Walsh G (2016) The biotechnological potential of whey. Rev Environ Sci Biotechnol 15:479–498

    Article  Google Scholar 

  21. Birwal P, Deshmukh G, Priyanka SSP, Saurabh SP (2017) Advanced technologies for dairy effluent treatment. J Food, Nutr Popul Health 1:7

    Google Scholar 

  22. Samudro G, Mangkoedihardjo S (2010) Review on BOD, COD and BOD/COD ratio: a triangle zone for toxic, biodegradable and stable levels. Int J Acad Res 2

  23. Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Total Environ 445:385–396

    Article  Google Scholar 

  24. Alsaed AK, Ahmad R, Aldoomy H et al (2013) Characterization, concentration and utilization of sweet and acid whey. Pakistan J Nutr 12:172

    Article  Google Scholar 

  25. Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management: a review. J Environ Manage 110:48–68

    Article  Google Scholar 

  26. O’Regan J, Ennis MP, Mulvihill DM (2009) Milk proteins. In: Handbook of hydrocolloids. Elsevier, pp 298–358

    Chapter  Google Scholar 

  27. Pires AF, Marnotes NG, Rubio OD et al (2021) Dairy by-products: a review on the valorization of whey and second cheese whey. Foods 10:1067

    Article  Google Scholar 

  28. León-López A, Pérez-Marroquín XA, Estrada-Fernández AG et al (2022) Milk whey hydrolysates as high value-added natural polymers: functional properties and applications. Polymers 14(14):1258. https://doi.org/10.3390/POLYM14061258

    Article  Google Scholar 

  29. Ha E, Zemel MB (2003) Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people. J Nutr Biochem 14:251–258

    Article  Google Scholar 

  30. Krissansen GW (2007) Emerging health properties of whey proteins and their clinical implications. J Am Coll Nutr 26:713S–723S

    Article  Google Scholar 

  31. Park YW, Nam MS (2015) Bioactive peptides in milk and dairy products: a review. Korean J Food Sci Anim Resour 35:831

    Article  Google Scholar 

  32. Chung C, Degner B, McClements DJ (2014) Development of reduced-calorie foods: microparticulated whey proteins as fat mimetics in semi-solid food emulsions. Food Res Int 56:136–145

    Article  Google Scholar 

  33. Ipsen R (2017) Microparticulated whey proteins for improving dairy product texture. Int Dairy J 67:73–79

    Article  Google Scholar 

  34. Jovanović S, Barać M, Maćej O (2005) Whey proteins-properties and possibility of application. Mljekarstvo: Časopis za Unaprjeđenje Proizvodnje i Prerade Mlijeka 55:215–233

    Google Scholar 

  35. Stanchev P, Vasilaki V, Egas D et al (2020) Multilevel environmental assessment of the anaerobic treatment of dairy processing effluents in the context of circular economy. J Clean Prod 261:121139

    Article  Google Scholar 

  36. Sanmartín B, Díaz O, Rodríguez-Turienzo L, Cobos A (2012) Composition of caprine whey protein concentrates produced by membrane technology after clarification of cheese whey. Small Rumin Res 105:186–192

    Article  Google Scholar 

  37. Pedersen L, Mollerup J, Hansen E, Jungbauer A (2003) Whey proteins as a model system for chromatographic separation of proteins. J Chromatogr B 790:161–173

    Article  Google Scholar 

  38. Kumar R, Chauhan SK, Shinde G et al (2018) Whey proteins: a potential ingredient for food industry—a review. Asian J Dairy Food Res 37:283–290

    Google Scholar 

  39. Chavan RS, Shraddha RC, Kumar A, Nalawade T (2015) Whey based beverage: its functionality, formulations, health benefits and applications. J Food Process Technol 6:1

    Google Scholar 

  40. Jelen P (2009) Whey-based functional beverages. In: Functional and speciality beverage technology. Elsevier, pp 259–280

    Google Scholar 

  41. JK AT (2019) Logomaker: beautiful sequence logos in python. Bioinformatics 36:2272–2274. https://doi.org/10.1093/bioinformatics/btz921

    Article  Google Scholar 

  42. Stobaugh HC, Ryan KN, Kennedy JA et al (2016) Including whey protein and whey permeate in ready-to-use supplementary food improves recovery rates in children with moderate acute malnutrition: a randomized, double-blind clinical trial. Am J Clin Nutr 103:926–933

    Article  Google Scholar 

  43. Baldasso C, Barros TC, Tessaro IC (2011) Concentration and purification of whey proteins by ultrafiltration. Desalination 278:381–386

    Article  Google Scholar 

  44. Spalatelu C (2012) Biotechnological valorisation of whey. Innov Rom Food Biotechnol 10:1

    Google Scholar 

  45. de Souza RR, Bergamasco R, da Costa SC et al (2010) Recovery and purification of lactose from whey. Chem Eng Process: Process Intensif 49:1137–1143

    Article  Google Scholar 

  46. Singh DP, Dwevedi A (2018) Production of clean energy by green ways. Solutions to Environmental Problems Involving Nanotechnology and Enzyme Technology, pp 49–90. https://doi.org/10.1016/B978-0-12-813123-7.00002-5

    Book  Google Scholar 

  47. Hargrove RE, McDonough FE, Lacroix DE, Alford JA (1976) Production and properties of deproteinized whey powders. J Dairy Sci 59:25–33

    Article  Google Scholar 

  48. Cuartas-Uribe B, Alcaina-Miranda MI, Soriano-Costa E et al (2009) A study of the separation of lactose from whey ultrafiltration permeate using nanofiltration. Desalination 241:244–255

    Article  Google Scholar 

  49. Listiohadi YD, Hourigan JA, Sleigh RW, Steele RJ (2005) An exploration of the caking of lactose in whey and skim milk powders. Aust J Dairy Technol 60:207

    Google Scholar 

  50. Yang S-T, Silva EM (1995) Novel products and new technologies for use of a familiar carbohydrate, milk lactose. J Dairy Sci 78:2541–2562

    Article  Google Scholar 

  51. Gupta C, Prakash D (2017) Therapeutic potential of milk whey. Beverages 3:31

    Article  Google Scholar 

  52. Fox PF (1997) Lactose, water, salts and vitamins. Adv Dairy Chem 3:536

    Google Scholar 

  53. Sar T, Stark BC, Akbas MY (2019) Bioethanol production from whey powder by immobilized E. coli expressing Vitreoscilla hemoglobin: optimization of sugar concentration and inoculum size. Biofuels

    Google Scholar 

  54. Jayamuthunagai J, Srisowmeya G, Chakravarthy M, Gautam P (2017) D-Tagatose production by permeabilized and immobilized Lactobacillus plantarum using whey permeate. Bioresour Technol 235:250–255

    Article  Google Scholar 

  55. Grenov B, Briend A, Sangild PT et al (2016) Undernourished children and milk lactose. Food Nutr Bull 37:85–99

    Article  Google Scholar 

  56. Zadow JG (1984) Lactose: properties and uses. J Dairy Sci 67:2654–2679

    Article  Google Scholar 

  57. Nagar S, Nagal S (2013) Whey: composition, role in human health and its utilization in preparation of value added products. Int J Food Ferment Technol 3:93–100

    Article  Google Scholar 

  58. Turner TL, Kim E, Hwang C et al (2017) Conversion of lactose and whey into lactic acid by engineered yeast. J Dairy Sci 100:124–128

    Article  Google Scholar 

  59. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902

    Article  Google Scholar 

  60. Guimarães PMR, Teixeira JA, Domingues L (2010) Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol Adv 28:375–384

    Article  Google Scholar 

  61. Ghaly AE, Kamal M, Correia LR (2005) Kinetic modelling of continuous submerged fermentation of cheese whey for single cell protein production. Bioresour Technol 96:1143–1152

    Article  Google Scholar 

  62. Mahmoud MM, Kosikowski FV (1982) Alcohol and single cell protein production by Kluyveromyces in concentrated whey permeates with reduced ash. J Dairy Sci 65:2082–2087

    Article  Google Scholar 

  63. Barrett E, Stanton C, Zelder O et al (2004) Heterologous expression of lactose-and galactose-utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. Appl Environ Microbiol 70:2861–2866

    Article  Google Scholar 

  64. Büyükkileci AO, Harsa S (2004) Batch production of L (+) lactic acid from whey by Lactobacillus casei (NRRL B-441). J Chem Technol Biotechnol: Int Res Process, Environ Clean Technol 79:1036–1040

    Article  Google Scholar 

  65. Panesar PS, Kennedy JF, Knill CJ, Kosseva M (2010) Production of L (+) lactic acid using Lactobacillus casei from whey. Braz Arch Biol Technol 53:219–226

    Article  Google Scholar 

  66. Gandhi DN, Patel RS, Wadhwa BK et al (2000) Effect of agro-based by-products on production of lactic acid in whey permeate medium. J Food Sci Technol (Mysore) 37:292–295

    Google Scholar 

  67. Sahoo TK, Jayaraman G (2019) Co-culture of Lactobacillus delbrueckii and engineered Lactococcus lactis enhances stoichiometric yield of d-lactic acid from whey permeate. Appl Microbiol Biotechnol 103:5653–5662

    Article  Google Scholar 

  68. Prasad S, Srikanth K, Limaye AM, Sivaprakasam S (2014) Homo-fermentative production of d-lactic acid by Lactobacillus sp. employing casein whey permeate as a raw feed-stock. Biotechnol Lett 36:1303–1307

    Article  Google Scholar 

  69. Reddy Tadi SR, EVR A, Limaye AM, Sivaprakasam S (2017) Enhanced production of optically pure D (–) lactic acid from nutritionally rich Borassus flabellifer sugar and whey protein hydrolysate based–fermentation medium. Biotechnol Appl Biochem 64:279–289

    Article  Google Scholar 

  70. Liu P, Zheng Z, Xu Q et al (2018) Valorization of dairy waste for enhanced D-lactic acid production at low cost. Process Biochem 71:18–22

    Article  Google Scholar 

  71. Gali KK, Mukherjee P, Katiyar V, Sivaprakasam S (2022) Process efficacy in cassava-based biorefinery: scalable process technology for the development of green monomer d-lactic acid, pp 107–134. https://doi.org/10.1007/978-981-19-4316-4_5

    Book  Google Scholar 

  72. Mehta R, Kumar V, Bhunia H, Upadhyay SN (2005) Synthesis of poly (lactic acid): a review. J Macromol Sci C: Polym Rev 45:325–349

    Article  Google Scholar 

  73. Jia S, Yu D, Zhu Y et al (2017) Morphology, crystallization and thermal behaviors of PLA-based composites: wonderful effects of hybrid GO/PEG via dynamic impregnating. Polymers (Basel) 9:528

    Article  Google Scholar 

  74. Klotz S, Kaufmann N, Kuenz A, Prüße U (2016) Biotechnological production of enantiomerically pure d-lactic acid. Appl Microbiol Biotechnol 100:9423–9437

    Article  Google Scholar 

  75. Lebarbe T (2013) Synthesis of novel “green” polyesters from plant oils: application to the rubber-toughening of poly (L-lactide)(Doctoral dissertation, Université Sciences et Technologies-Bordeaux I)

  76. Fernandes MC, Alves-Ferreira J, Duarte LC et al (2023) D-lactic acid production from hydrothermally pretreated, alkali delignified and enzymatically saccharified rockrose with the metabolic engineered Escherichia coli strain JU15. Biomass Convers Biorefin 13:12849–12858. https://doi.org/10.1007/S13399-021-02207-0/TABLES/5

    Article  Google Scholar 

  77. Arshadi M, Attard TM, Lukasik RM et al (2016) Pre-treatment and extraction techniques for recovery of added value compounds from wastes throughout the agri-food chain. Green Chem 18:6160–6204

    Article  Google Scholar 

  78. Yamada R, Yokota M, Matsumoto T et al (2023) Promoting cell growth and characterizing partial symbiotic relationships in the co-cultivation of green alga Chlamydomonas reinhardtii and Escherichia coli. Biotechnol J 18:2200099. https://doi.org/10.1002/BIOT.202200099

    Article  Google Scholar 

  79. Ahmad A, Banat F, Taher H (2020) A review on the lactic acid fermentation from low-cost renewable materials: recent developments and challenges. Environ Technol Innov 101138

  80. Mimitsuka T, Sawai K, Kobayashi K et al (2015) Production of d-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in d-lactic acid carbon yield. J Biosci Bioeng 119:65–71

    Article  Google Scholar 

  81. Beitel SM, Coelho LF, Contiero J (2020) Efficient conversion of agroindustrial waste into D (-) lactic acid by Lactobacillus delbrueckii using fed-batch fermentation. Biomed Res Int 2020

  82. Bai Z, Gao Z, Sun J et al (2016) D-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue. Bioresour Technol 207:346–352

    Article  Google Scholar 

  83. Ahring BK, Traverso JJ, Murali N, Srinivas K (2016) Continuous fermentation of clarified corn stover hydrolysate for the production of lactic acid at high yield and productivity. Biochem Eng J 109:162–169

    Article  Google Scholar 

  84. Abdel-Rahman MA, Tashiro Y, Zendo T et al (2016) Highly efficient L-lactic acid production from xylose in cell recycle continuous fermentation using Enterococcus mundtii QU 25. RSC Adv 6:17659–17668

    Article  Google Scholar 

  85. Lee HD, Lee MY, Hwang YS et al (2017) Separation and purification of lactic acid from fermentation broth using membrane-integrated separation processes. Ind Eng Chem Res 56:8301–8310

    Article  Google Scholar 

  86. Komesu A, de Oliveira JAR, da Silva Martins LH et al (2017) Lactic acid production to purification: a review. Bioresources 12:4364–4383

    Article  Google Scholar 

  87. Su C-Y, Yu C-C, Chien I-L, Ward JD (2015) Control of highly interconnected reactive distillation processes: purification of raw lactic acid by esterification and hydrolysis. Ind Eng Chem Res 54:6932–6940

    Article  Google Scholar 

  88. Komesu A, Wolf Maciel MR, Rocha de Oliveira JA et al (2017) Purification of lactic acid produced by fermentation: focus on non-traditional distillation processes. Sep Purif Rev 46:241–254

    Article  Google Scholar 

  89. Wang L, Cai Y, Zhu L et al (2014) Major role of NAD-dependent lactate dehydrogenases in the production of l-lactic acid with high optical purity by the thermophile Bacillus coagulans. Appl Environ Microbiol 80:7134–7141

    Article  Google Scholar 

  90. Mazzoli R, Bosco F, Mizrahi I et al (2014) Towards lactic acid bacteria-based biorefineries. Biotechnol Adv 32:1216–1236

    Article  Google Scholar 

  91. van de Guchte M, Penaud S, Grimaldi C et al (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Nat Acad Sci 103:9274–9279

    Article  Google Scholar 

  92. Yadav M, Shukla P (2020) Efficient engineered probiotics using synthetic biology approaches: a review. Biotechnol Appl Biochem 67:22–29

    Article  Google Scholar 

  93. Manome A, Okada S, Uchimura T, Komagata K (1998) The ratio of L-form to D-form of lactic acid as a criteria for the identification of lactic acid bacteria. J Gen Appl Microbiol 44:371–374

    Article  Google Scholar 

  94. Tanaka T, Hoshina M, Tanabe S et al (2006) Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour Technol 97:211–217

    Article  Google Scholar 

  95. Calabia BP, Tokiwa Y (2007) Production of D-lactic acid from sugarcane molasses, sugarcane juice and sugar beet juice by Lactobacillus delbrueckii. Biotechnol Lett 29:1329–1332

    Article  Google Scholar 

  96. Yáñez R, Moldes AB, Alonso JL, Parajó JC (2003) Production of D (−)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnol Lett 25:1161–1164

    Article  Google Scholar 

  97. Benthin S, Villadsen J (1995) Production of optically pure D-lactate by Lactobacillus bulgaricus and purification by crystallisation and liquid/liquid extraction. Appl Microbiol Biotechnol 42:826–829

    Article  Google Scholar 

  98. Okano K, Zhang Q, Shinkawa S et al (2009) Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and α-amylase-secreting Lactobacillus plantarum strain. Appl Environ Microbiol 75:462–467

    Article  Google Scholar 

  99. Okano K, Zhang Q, Yoshida S et al (2010) D-lactic acid production from cellooligosaccharides and β-glucan using L-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum. Appl Microbiol Biotechnol 85:643–650

    Article  Google Scholar 

  100. Kleerebezem M, Hugenholtz J (2003) Metabolic pathway engineering in lactic acid bacteria. Curr Opin Biotechnol 14:232–237

    Article  Google Scholar 

  101. Son J, Jeong KJ (2020) Recent advances in synthetic biology for the engineering of lactic acid bacteria. Biotechnol Bioprocess Eng 25:962–973

  102. de Vos WM (1999) Gene expression systems for lactic acid bacteria. Curr Opin Microbiol 2:289–295

    Article  Google Scholar 

  103. Cho SW, Yim J, Seo SW (2020) Engineering tools for the development of recombinant lactic acid bacteria. Biotechnol J 15:1900344

    Article  Google Scholar 

  104. Rud I, Jensen PR, Naterstad K, Axelsson L (2006) A synthetic promoter library for constitutive gene expression in Lactobacillus plantarum. Microbiology (N Y) 152:1011–1019

    Google Scholar 

  105. Thompson J (1987) Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiol Rev 3:221–231

    Article  Google Scholar 

  106. Kandler O (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49:209–224

    Article  Google Scholar 

  107. Bhowmik T, Steele JL (1994) Cloning, characterization and insertional inactivation of the Lactobacillus helveticus D (−) lactate dehydrogenase gene. Appl Microbiol Biotechnol 41:432–439

    Google Scholar 

  108. Okano K, Tanaka T, Ogino C et al (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85:413–423

    Article  Google Scholar 

  109. Saitoh S, Ishida N, Onishi T et al (2005) Genetically engineered wine yeast produces a high concentration of L-lactic acid of extremely high optical purity. Appl Environ Microbiol 71:2789–2792

    Article  Google Scholar 

  110. Okano K, Uematsu G, Hama S et al (2018) Metabolic engineering of Lactobacillus plantarum for direct l-lactic acid production from raw corn starch. Biotechnol J 13:1700517

    Article  Google Scholar 

  111. Andersen HW, Solem C, Hammer K, Jensen PR (2001) Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux. J Bacteriol 183:3458–3467

    Article  Google Scholar 

  112. de Felipe FL, Hugenholtz J (2001) Purification and characterisation of the water forming NADH-oxidase from Lactococcus lactis. Int Dairy J 11:37–44

    Article  Google Scholar 

  113. Zhai Z, An H, Wang G et al (2015) Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid. Sci Rep 5:17024. https://doi.org/10.1038/srep17024

    Article  Google Scholar 

  114. Awasthi D, Wang L, Rhee MS et al (2018) Metabolic engineering of Bacillus subtilis for production of D-lactic acid. Biotechnol Bioeng 115:453–463. https://doi.org/10.1002/BIT.26472

    Article  Google Scholar 

  115. Ishida N, Suzuki T, Tokuhiro K et al (2006) d-Lactic acid production by metabolically engineered Saccharomyces cerevisiae. J Biosci Bioeng 101:172–177. https://doi.org/10.1263/JBB.101.172

    Article  Google Scholar 

  116. Grabar TB, Zhou S, Shanmugam KT et al (2006) Methylglyoxal bypass identified as source of chiral contamination in L(+) and D(-)-lactate fermentations by recombinant Escherichia coli. Biotechnol Lett 28:1527–1535. https://doi.org/10.1007/S10529-006-9122-7/METRICS

    Article  Google Scholar 

  117. Wang Q, Ingram LO, Shanmugam KT (2011) Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose. Proc Natl Acad Sci U S A 108:18920–18925. https://doi.org/10.1073/PNAS.1111085108/SUPPL_FILE/PNAS.1111085108_SI.PDF

    Article  Google Scholar 

  118. Baek SH, Kwon EY, Kim YH, Hahn JS (2016) Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 100:2737–2748. https://doi.org/10.1007/S00253-015-7174-0/TABLES/2

    Article  Google Scholar 

  119. Sangproo M, Polyiam P, Jantama SS et al (2012) Metabolic engineering of Klebsiella oxytoca M5a1 to produce optically pure d-lactate in mineral salts medium. Bioresour Technol 119:191–198. https://doi.org/10.1016/J.BIORTECH.2012.05.114

    Article  Google Scholar 

  120. In S, Khunnonkwao P, Wong N et al (2020) Combining metabolic engineering and evolutionary adaptation in Klebsiella oxytoca KMS004 to significantly improve optically pure D-(−)-lactic acid yield and specific productivity in low nutrient medium. Appl Microbiol Biotechnol 104:9565–9579. https://doi.org/10.1007/S00253-020-10933-0/TABLES/3

    Article  Google Scholar 

  121. Zhang Y, Vadlani PV, Kumar A et al (2016) Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum. Appl Microbiol Biotechnol 100:279–288. https://doi.org/10.1007/S00253-015-7016-0/FIGURES/3

    Article  Google Scholar 

  122. Tsuge Y, Kato N, Yamamoto S et al (2019) Metabolic engineering of Corynebacterium glutamicum for hyperproduction of polymer-grade l- and d-lactic acid. Appl Microbiol Biotechnol 103:3381–3391. https://doi.org/10.1007/S00253-019-09737-8/TABLES/3

    Article  Google Scholar 

  123. Yamada R, Wakita K, Mitsui R, Ogino H (2017) Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway. Biotechnol Bioeng 114:2075–2084. https://doi.org/10.1002/BIT.26330

    Article  Google Scholar 

  124. Zhong W, Yang M, Hao X et al (2021) Improvement of D-lactic acid production at low pH through expressing acid-resistant gene IoGAS1 in engineered Saccharomyces cerevisiae. J Chem Technol Biotechnol 96:732–742. https://doi.org/10.1002/JCTB.6587

    Article  Google Scholar 

  125. Varman AM, Yu Y, You L, Tang YJ (2013) Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microb Cell Fact 12:1–8. https://doi.org/10.1186/1475-2859-12-117/TABLES/2

    Article  Google Scholar 

  126. Watcharawipas A, Sae-Tang K, Sansatchanon K et al (2021) Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield. FEMS Yeast Res 21. https://doi.org/10.1093/FEMSYR/FOAB024

  127. Heiss S, Hörmann A, Tauer C et al (2016) Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum. Microb Cell Fact 15:1–17

    Article  Google Scholar 

  128. Van Pijkeren J-P, Britton RA (2012) High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res 40:e76–e76

    Article  Google Scholar 

  129. Van Dien S (2013) From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr Opin Biotechnol 24:1061–1068

    Article  Google Scholar 

Download references

Availability of data and materials

All the data and materials generated in this research work have been included in this study.

Funding

The work was supported by the Department of Biotechnology (Ministry of Science and Technology, Govt. of India) via project no. BT/PR24592/NER/95/764/2017.

Author information

Authors and Affiliations

Authors

Contributions

PM: conceptualization, formal analysis, validation, investigation, writing – original draft, writing—review and editing; NR: investigation, diagrams, and tables—review and editing; SS: supervision, project administration, funding acquisition, writing—review, and editing.

Corresponding author

Correspondence to Senthilkumar Sivaprakasam.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, P., Raj, N. & Sivaprakasam, S. Harnessing valorization potential of whey permeate for D-lactic acid production using lactic acid bacteria. Biomass Conv. Bioref. 13, 15639–15658 (2023). https://doi.org/10.1007/s13399-023-05038-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-023-05038-3

Keywords

Navigation