Log in

The effect of the lignin isolation method from oil palm empty fruit bunch black liquor for seed coating material

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lignin has potency as a seed coating treatment for preserving seed from deterioration prior to plant and prevent seed growth quickly. Nonetheless, given the complexity of lignin characteristics, it is necessary to develop isolation methods to ensure appropriate utilization, particularly for seed coating. This study intended to observe the oil palm empty fruit bunch (OPEFB) lignin for seed coating treatment and evaluate the effect on chili seed growth. Previously, lignin was extracted by inorganic acid, specifically H2SO4 and HCL, via a precipitation method with washing treatment of 3 and 5 times. The effectiveness of lignin as seed coating was evaluated by soaking chili seeds in a lignin-NaOH solution. The results showed that HCl-isolated lignin has a higher purity of 91.62% compared to H2SO4-isolated lignin after 5 washing treatments. Meanwhile, H2SO4-isolated lignin has a higher yield of 19.29%. The syringyl/guiacyl (S/G) ratio of isolated lignin by HCl and H2SO4 with different washing treatments ranges from 0.97 to 1.97. Thermal analysis reveals that HCl-isolated lignin is more stable than H2SO4-isolated lignin, with a mass residue of 49.4%. The glass transition (Tg) ranges from 126.42 to 168.05 °C. The result showed that the shelf life of lignin-coated seed was up to 30 weeks at room temperature and more resistance to fungal contaminants. Germination of chili-coated seeds occurs in the second to fourth weeks after the planting period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Statista (2022) Production volume of palm oil in Indonesia from 2012 to 2021. In: Stat Res Dep. https://www.statista.com/statistics/706786/production-of-palm-oil-in-indonesia/. Accessed 4 Apr 2023

  2. IPOA (2023) Palm oil industry performance February 2023: production decline still continues. In: GAPKI Indones. Palm Oil Assoc. https://gapki.id/en/news/23012/palm-oil-industry-performance-february-2023-production-decline-still-continues. Accessed 14 Aug 2023

  3. IPOA (2022) Palm oil performance in 2021 and prospect in 2022. In: GAPKI Indones. Palm Oil Assoc. https://gapki.id/en/news/21136/palm-oil-performance-in-2021-and-prospect-in-2022. Accessed 14 Apr 2023

  4. Mahidin, Saifullah, Erdiwansyah et al (2020) Analysis of power from palm oil solid waste for biomass power plants: A case study in Aceh Province. Chemosphere 253:126714. https://doi.org/10.1016/j.chemosphere.2020.126714

    Article  Google Scholar 

  5. Li YH, Chen HH (2018) Analysis of syngas production rate in empty fruit bunch steam gasification with varying control factors. Int J Hydrog Energy 43:667–675. https://doi.org/10.1016/j.ijhydene.2017.11.117

    Article  Google Scholar 

  6. Sari FP, Falah F, Anita SH et al (2021) Pretreatment of oil palm empty fruit bunch (OPEFB) at bench-scale high temperature-pressure steam reactor for enhancement of enzymatic saccharification. Int J Renew Energy Dev 10:157–169. https://doi.org/10.14710/ijred.2021.32343

    Article  Google Scholar 

  7. Dewanti DP (2018) Potensi Selulosa dari Limbah Tandan Kosong Kelapa Sawit untuk Bahan Baku Bioplastik Ramah Lingkungan. J Teknol Lingkung 19:81. https://doi.org/10.29122/jtl.v19i1.2644

    Article  Google Scholar 

  8. Ridho MR, Agustiany EA, Rahmi Dn M et al (2022) Lignin as green filler in polymer composites: development methods, characteristics, and potential applications. Adv Mater Sci Eng 10:1–33. https://doi.org/10.1155/2022/1363481

    Article  Google Scholar 

  9. Ela RCA, Spahn L, Safaie N et al (2020) Understanding the effect of precipitation process variables on hardwood lignin characteristics and recovery from black liquor. ACS Sustain Chem Eng 8:13997–14005. https://doi.org/10.1021/acssuschemeng.0c03692

    Article  Google Scholar 

  10. Chen J, Fan X, Zhang L et al (2020) Research progress in lignin-based slow/controlled release fertilizer. Chem Sustain Energy Mater 13:4356–4366. https://doi.org/10.1002/cssc.202000455

    Article  Google Scholar 

  11. Surina I, Jablonsky M, Haz A et al (2015) Characterisation of non-wood lignin precipitated with sulphuric acid of various concentration. BioResources 10:1408–1423

    Article  Google Scholar 

  12. Xu T, Ma C, Aytac Z et al (2020) Enhancing agrichemical delivery and seedling development with biodegradable, tunable, biopolymer-based nanofiber seed coatings. ACS Sustain Chem Eng 8:9537–9548. https://doi.org/10.1021/acssuschemeng.0c02696

    Article  Google Scholar 

  13. Kienberger M, Maitz S, Pichler T, Demmelmayer P (2021) Systematic review on isolation processes for technical lignin. Processes 9. https://doi.org/10.3390/pr9050804

  14. Lourençon TV, de Lima GG, Ribeiro CSP et al (2021) Antioxidant, antibacterial and antitumoural activities of kraft lignin from hardwood fractionated by acid precipitation. Int J Biol Macromol 166:1535–1542. https://doi.org/10.1016/j.ijbiomac.2020.11.033

    Article  Google Scholar 

  15. Poursorkhabi V, Misra M, Mohanty AK (2013) Extraction of lignin from a coproduct of the cellulosic ethanol industry and its thermal characterization. BioResources 8:5083–5101. https://doi.org/10.15376/biores.8.4.5083-5101

    Article  Google Scholar 

  16. Yang Q, Pan X (2016) Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose. Biotechnol Bioeng 113:1213–1224. https://doi.org/10.1002/bit.25903

    Article  Google Scholar 

  17. Yang J, Ching YC, Chuah CH (2019) Applications of lignocellulosic fibers and lignin in bioplastics: a review. Polymers 11:1–26

    Google Scholar 

  18. Zikeli F, Vettraino AM, Biscontri M et al (2023) Lignin nanoparticles with entrapped Thymus spp. essential oils for the control of wood-rot fungi. Polymers (Basel) 15:2713. https://doi.org/10.3390/polym15122713

    Article  Google Scholar 

  19. Deepa GT, Chetti MB, Khetagoudar MC, Adavirao GM (2013) Influence of vacuum packaging on seed quality and mineral contents in chilli (Capsicum annuum L.). J Food Sci Technol 50:153–158. https://doi.org/10.1007/s13197-011-0241-3

    Article  Google Scholar 

  20. Sukowardojo B, Pertanian F, Jember U (2012) Upaya memperpanjang daya simpan benih kedelai dengan pelapisan chitosan berdasarkan penilaian viabilitas dan kandungan kimiawi. J Agritrop 11:15–22. https://doi.org/10.32528/agr.v11i1.664

    Google Scholar 

  21. Afzal I, Javed T, Amirkhani M, Taylor AG (2020) Modern seed technology: seed coating delivery systems for enhancing seed and crop performance. Agric 10:1–20. https://doi.org/10.3390/agriculture10110526

    Article  Google Scholar 

  22. Kimmelshue C, Goggi AS, Cademartiri R (2019) The use of biological seed coatings based on bacteriophages and polymers against Clavibacter michiganensis subsp. nebraskensis in maize seeds. Sci Rep 9:1–11. https://doi.org/10.1038/s41598-019-54068-3

    Article  Google Scholar 

  23. Gorim L, Asch F (2012) Effects of composition and share of seed coatings on the mobilization efficiency of cereal seeds during germination. J Agron Crop Sci 198:81–91. https://doi.org/10.1111/j.1439-037X.2011.00490.x

    Article  Google Scholar 

  24. Amirkhani M, Mayton HS, Netravali AN, Taylor AG (2019) A seed coating delivery system for bio-based biostimulants to enhance plant growth. Sustain 11:1–16. https://doi.org/10.3390/su11195304

    Article  Google Scholar 

  25. Solihat NN, Santoso EB, Karimah A et al (2022) Physical and chemical properties of Acacia mangium lignin isolated from pulp mill byproduct for potential application in wood composites. Polymers (Basel) 14:1–19. https://doi.org/10.3390/polym14030491

    Article  Google Scholar 

  26. TAPPI Test Method T 264 cm-97 (1997) Preparation of wood for chemical analysis. In: Technical Association of the Pulp & Paper Industry. Peachtree Corners, USA, pp 3–5

    Google Scholar 

  27. TAPPI T211 om-02 method (2007) Ash in wood, pulp, paper and paperboard: Combustion at 525 °C. Peachtree Corners, USA

    Google Scholar 

  28. Sluiter A, Hames B, Ruiz R et al (2012) Determination of structural carbohydrates and lignin in Biomass - NREL/TP-510-42618. [NREL] National Renewable Energy Laboratory, pp 1–17

    Google Scholar 

  29. Saeed N, Khan MR, Shabbir M (2012) Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med 12. https://doi.org/10.1186/1472-6882-12-221

  30. Serrano L, Esakkimuthu ES, Marlin N et al (2018) Fast, easy, and economical quantification of lignin phenolic hydroxyl groups: comparison with classical techniques. Energy Fuel 32:5969–5977. https://doi.org/10.1021/acs.energyfuels.8b00383

    Article  Google Scholar 

  31. Nakagawa-Izumi A, H’ng YY, Mulyantara LT et al (2017) Characterization of syringyl and guaiacyl lignins in thermomechanical pulp from oil palm empty fruit bunch by pyrolysis-gas chromatography-mass spectrometry using ion intensity calibration. Ind Crop Prod 95:615–620. https://doi.org/10.1016/j.indcrop.2016.11.030

    Article  Google Scholar 

  32. Surono NK (2017) The dark septate endophytic fungus Phialocephala fortinii is a potential decomposer of soil organic compounds and a promoter of Asparagus of fi cinalis growth. Fungal Ecol 28:1–10. https://doi.org/10.1016/j.funeco.2017.04.001

    Article  Google Scholar 

  33. Ridho MR, Madyaratri EW, Agustiany EA et al (2022) Isolation and characterization of lignin from black liquor of arecanut leaf sheath (Areca catechu L.) with hydrochloric acid and phosphoric acid. Int Conf Lignocellul:1–9

  34. Hermiati E, Risanto L, Lubis MAR et al (2017) Chemical characterization of lignin from kraft pul** black liquor of Acacia mangium. AIP Conf Proc 1803. https://doi.org/10.1063/1.4973132

  35. Vishtal A, Kraslawski A (2011) Challenges in industrial applications of technical lignins. BioResources 6:3547–3568. https://doi.org/10.15376/biores.6.3.vishtal

    Article  Google Scholar 

  36. Risanto L, Hermiati E, Sudiyani Y (2014) Properties of lignin from oil palm empty fruit bunch and its application for plywood adhesive. Makara J Technol 18:67. https://doi.org/10.7454/mst.v18i2.2944

    Article  Google Scholar 

  37. Lubis MAR, Dewi AR, Risanto L et al (2014) Isolation and characterization of lignin from alkaline pretreatment black liquor of oil palm empty fruit bunch and sugarcane bagasse. Proceeding Asean Cosat 2014:483–491

    Google Scholar 

  38. Ajao O, Jeaidi J, Benali M et al (2018) Quantification and variability analysis of lignin optical properties for colour-dependent industrial applications. Molecules 23. https://doi.org/10.3390/molecules23020377

  39. Mohtar SS, Tengku Malim Busu TNZ, Md Noor AM et al (2015) Extraction and characterization of lignin from oil palm biomass via ionic liquid dissolution and non-toxic aluminium potassium sulfate dodecahydrate precipitation processes. Bioresour Technol 192:212–218. https://doi.org/10.1016/j.biortech.2015.05.029

    Article  Google Scholar 

  40. Ludmila H, Michal J, Andrea Š, Aleš H (2015) Lignin, potential products and their market value. Wood Res 60:973–986

    Google Scholar 

  41. Amran UA, Zakaria S, Chia CH et al (2017) Production of liquefied oil palm empty fruit bunch based polyols via microwave heating. Energy Fuel 31:1–34. https://doi.org/10.1021/acs.energyfuels.7b02098

    Article  Google Scholar 

  42. Madyaratri EW, Iswanto AH, Nawawi DS et al (2022) Improvement of thermal behavior of rattan by lignosulphonate impregnation treatment. Forests 13:1–24. https://doi.org/10.3390/f13111773

    Article  Google Scholar 

  43. Jung W, Savithri D, Sharma-Shivappa R, Kolar P (2020) Effect of sodium hydroxide pretreatment on lignin monomeric components of miscanthus × giganteus and enzymatic hydrolysis. Waste Biomass Valorization 11:5891–5900. https://doi.org/10.1007/s12649-019-00859-8

    Article  Google Scholar 

  44. Ohra-Aho T, Gomes FJB, Colodette JL, Tamminen T (2013) S/G ratio and lignin structure among Eucalyptus hybrids determined by Py-GC/MS and nitrobenzene oxidation. J Anal Appl Pyrolysis 101:166–171. https://doi.org/10.1016/j.jaap.2013.01.015

    Article  Google Scholar 

  45. Zhang Y, Naebe M (2021) Lignin: a review on structure, properties, and applications as a light-colored UV absorber. ACS Sustain Chem Eng 9:1427–1442. https://doi.org/10.1021/acssuschemeng.0c06998

    Article  Google Scholar 

  46. Yu O, Kim KH (2020) Lignin to materials: A focused review on recent novel lignin applications. Appl Sci 10. https://doi.org/10.3390/app10134626

  47. Coral Medina JD, Woiciechowski A, Zandona Filho A et al (2015) Lignin preparation from oil palm empty fruit bunches by sequential acid/alkaline treatment — a biorefinery approach. Bioresour Technol 194:172–178. https://doi.org/10.1016/j.biortech.2015.07.018

    Article  Google Scholar 

  48. Díez D, Urueña A, Piñero R et al (2020) Determination of hemicellulose, cellulose, and lignin content in different types of biomasses by thermogravimetric analysis and pseudocomponent kinetic model (TGA-PKM Method). Processes 8. https://doi.org/10.3390/pr8091048

  49. Manara P, Zabaniotou A, Vanderghem C, Richel A (2014) Lignin extraction from Mediterranean agro-wastes: Impact of pretreatment conditions on lignin chemical structure and thermal degradation behavior. Catal Today 223:25–34. https://doi.org/10.1016/j.cattod.2013.10.065

    Article  Google Scholar 

  50. Handika SO, Lubis MAR, Sari RK et al (2021) Enhancing thermal and mechanical properties of ramie fiber via impregnation by lignin-based polyurethane resin. Materials (Basel) 14:1–22. https://doi.org/10.3390/ma14226850

    Article  Google Scholar 

  51. El MM, El KA, El MM et al (2018) Thermal and thermomechanical analyses of lignin. Sustain Chem Pharm 9:63–68. https://doi.org/10.1016/j.scp.2018.06.002

    Article  Google Scholar 

  52. Aleš H, Michal J, Lenka D et al (2015) Thermal properties and size distribution of lignins precipitated with sulphuric acid. Wood Res 60:375–384

    Google Scholar 

  53. Dominguez-Robles J, Espinosa E, Savy D et al (2016) Biorefinery process combining specel process and selective lignin precipitation using mineral acid. Chem Eng 120:14

    Google Scholar 

  54. Sameni J, Krigstin S, Rosa D d S et al (2014) Thermal characteristics of lignin residue from industrial processes. BioResources 9:725–737. https://doi.org/10.15376/biores.9.1.725-737

    Article  Google Scholar 

  55. Yue X, Suopajärvi T, Mankinen O et al (2020) Comparison of lignin fractions isolated from wheat straw using alkaline and acidic deep eutectic solvents. J Agric Food Chem 68:15074–15084. https://doi.org/10.1021/acs.jafc.0c04981

    Article  Google Scholar 

  56. Maniet G, Schmetz Q, Jacquet N et al (2017) Effect of steam explosion treatment on chemical composition and characteristic of organosolv fescue lignin. Ind Crop Prod 99:79–85. https://doi.org/10.1016/j.indcrop.2017.01.015

    Article  Google Scholar 

  57. Yun J, Wei L, Li W et al (2021) Isolating high antimicrobial ability lignin from bamboo kraft lignin by organosolv fractionation. Front Bioeng Biotechnol 9:1–11. https://doi.org/10.3389/fbioe.2021.683796

    Article  Google Scholar 

  58. Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2:3–10. https://doi.org/10.1038/srep00741

    Article  Google Scholar 

  59. Jouki M, Khazaei N, Ghasemlou M, Hadinezhad M (2013) Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydr Polym 96:39–46. https://doi.org/10.1016/j.carbpol.2013.03.077

    Article  Google Scholar 

  60. Ben Sghaier AEO, Chaabouni Y, Msahli S, Sakli F (2012) Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Ind Crop Prod 36:257–266. https://doi.org/10.1016/j.indcrop.2011.09.012

    Article  Google Scholar 

  61. Kok ADX, Muhamad W, Nizam A et al (2021) Sodium lignosulfonate improves shoot growth of Oryza sativa via enhancement of photosynthetic activity and reduced accumulation of reactive oxygen species. Sci Rep:1–13. https://doi.org/10.1038/s41598-021-92401-x

  62. Haghighi M, Teixeira JA, Teixeira JA (2014) The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J Crop Sci Biotechnol 2014:201–208

    Article  Google Scholar 

  63. Wang S, Su S, **ao LP et al (2020) Catechyl lignin extracted from castor seed coats using deep eutectic solvents: characterization and depolymerization. ACS Sustain Chem Eng 8:7031–7038. https://doi.org/10.1021/acssuschemeng.0c00462

    Article  Google Scholar 

  64. ur Rehman H, Iqbal Q, Farooq M et al (2013) Sulphur application improves the growth, seed yield and oil quality of canola. Acta Physiol Plant 35:2999–3006. https://doi.org/10.1007/s11738-013-1331-9

    Article  Google Scholar 

  65. Schmitt M, Watanabe T, Jansen S (2016) The effects of aluminium on plant growth in a temperate and deciduous aluminium accumulating species. AoB Plants 8. https://doi.org/10.1093/aobpla/plw065

  66. Ahmed AKA, Shi X, Hua L et al (2018) Influences of air, oxygen, nitrogen, and carbon dioxide nanobubbles on seed germination and plant growth. J Agric Food Chem 66:5117–5124. https://doi.org/10.1021/acs.jafc.8b00333

    Article  Google Scholar 

  67. Ahmed N, Masood A, Siow KS et al (2022) Effects of oxygen (O2) plasma treatment in promoting the germination and growth of chili. Plasma Chem Plasma Process 42:91–108. https://doi.org/10.1007/s11090-021-10206-2

    Article  Google Scholar 

  68. Ceccarelli N, Curadi M, Picciarelli P et al (2010) Globe artichoke as a functional food. Med J Nutrition Metab 3:197–201. https://doi.org/10.1007/s12349-010-0021-z

    Article  Google Scholar 

  69. Rouphael Y, Colla G, Graziani G et al (2017) Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Food Chem 234:10–19. https://doi.org/10.1016/j.foodchem.2017.04.175

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Advanced Characterization Laboratories Cibinong—Integrated Laboratory of Bioproduct (i-Lab), National Research and Innovation Agency, for the facilities.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Widya Fatriasari, Ikhsan Guswenrivo, and Deded Sarip Nawawi; methodology: Widya Fatriasari and Erika Ayu Agustiany; software: Erika Ayu Agustiany and Krisna Suzana; validation: Widya Fatriasari and Deded Sarip Nawawi; formal analysis: Widya Fatriasari, Ikhsan Guswenrivo, and Deded Sarip Nawawi; investigation: Widya Fatriasari; resources: Widya Fatriasari and Ikhsan Guswenrivo; data curation: Erika Ayu Agustiany, Ikhsan Guswenrivo, and Widya Fatriasari; writing—original draft preparation: Erika Ayu Agustiany, Ikhsan Guswenrivo, Widya Fatriasari, Deded Sarip Nawawi, and Arief Heru Priyanto; writing—review and editing: Widya Fatriasari, Ikhsan Guswenrivo, and Deded Sarip Nawawi; visualization: Erika Ayu Agustiany and Krisna Suzana; supervision: Widya Fatriasari and Deded Sarip Nawawi; project administration: Widya Fatriasari; funding acquisition: Widya Fatriasari. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Deded Sarip Nawawi or Widya Fatriasari.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agustiany, E.A., Suzana, K., Guswenrivo, I. et al. The effect of the lignin isolation method from oil palm empty fruit bunch black liquor for seed coating material. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04874-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04874-7

Keywords

Navigation