Log in

Lignocellulosic biomass: synthesis of lignophenolic thermosets with simultaneous formation of composites reinforced by sugarcane bagasse fibers

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Short sugarcane bagasse fibers, an agro-residue vastly produced worldwide, with Brazil being the leading producer, were used to reinforce brittle phenolic-type thermosets formed from resins synthesized using lignosulfonate to replace phenol. Glutaraldehyde, which has a lower vapor pressure than formaldehyde, was tested in the lignophenolic resin synthesis to improve the composite processability. Both composites, Glu-SLig (C) and For-SLig (C), formed from glutaraldehyde/sodium lignosulfonate and formaldehyde/sodium lignosulfonate resins, respectively, showed a higher impact and flexural strength than their respective non-reinforced thermosets. This may be attributed to the compatibility between the lignophenolic matrix and sugarcane bagasse fibers, indicated by their nearby free surface energy density dispersive component values. Glu-SLig(C) presented impact resistance (≅20%), flexural modulus (≅45%), and Tg values higher than For-SLig(C). Lignophenolic thermoset composites formed from a high volume of plant-based materials can be an excellent alternative to materials used in non-structural applications, such as rigid packaging and automotive interior parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The manuscript provided the data set generated during the reported study.

References

  1. Chen S, Wang G, Pang T, Sui W, Chen Z, Si C (2021) Green assembly of high-density and small-sized silver nanoparticles on lignosulfonate-phenolic resin spheres: Focusing on multifunction of lignosulfonate. Int J Biol Macromol 166:893–901. https://doi.org/10.1016/j.ijbiomac.2020.10.246

    Article  Google Scholar 

  2. Yamini G, Shakeri A, Zohuriaan-Mehr MJ, Kabiri K (2018) Cyclocarbonated lignosulfonate as a bio-resourced reactive reinforcing agent for epoxy biocomposite: From natural waste to value-added bio-additive. J CO2 Util 24:50–58. https://doi.org/10.1016/j.jcou.2017.12.007

    Article  Google Scholar 

  3. de Matos PR, Sakata RD, Foiato M, Repette WL, Gleize PJP (2021) Workability maintenance of water-reducing admixtures in high-performance pastes produced with different types of Portland cement. Rev Mater 26. https://doi.org/10.1590/s1517-707620210001.1225

  4. Ouyang X, Qiu X, Chen P (2006) Physicochemical characterization of calcium lignosulfonate—A potentially useful water reducer. Colloids Surfaces A Physicochem Eng Asp 282–283:489–497. https://doi.org/10.1016/J.COLSURFA.2005.12.020

    Article  Google Scholar 

  5. Qin Y, Yang D, Qiu X (2015) Hydroxypropyl Sulfonated Lignin as Dye Dispersant: Effect of Average Molecular Weight. ACS Sustain Chem Eng 3:3239–3244. https://doi.org/10.1021/acssuschemeng.5b00821

    Article  Google Scholar 

  6. Yu L, Yu J, Mo W, Qin Y, Yang D, Qiu X (2016) Etherification to improve the performance of lignosulfonate as dye dispersant. RSC Adv 6:70863–70869. https://doi.org/10.1039/c6ra12173j

    Article  Google Scholar 

  7. Peng R, Pang Y, Qiu X, Qian Y, Zhou M (2020) Synthesis of anti-photolysis lignin-based dispersant and its application in pesticide suspension concentrate. RSC Adv 10:13830–13837. https://doi.org/10.1039/c9ra10626j

    Article  Google Scholar 

  8. Liu Y, Nie W, Mu Y, Zhang H, Wang H, ** H, Liu Z (2018) A synthesis and performance evaluation of a highly efficient ecological dust depressor based on the sodium lignosulfonate-acrylic acid graft copolymer. RSC Adv 8:11498–11508. https://doi.org/10.1039/c7ra12556a

    Article  Google Scholar 

  9. Antov P, Savov V, Mantanis GI, Neykov N (2021) Medium-density fibreboards bonded with phenol-formaldehyde resin and calcium lignosulfonate as an eco-friendly additive, Wood. Mater Sci Eng 16:42–48. https://doi.org/10.1080/17480272.2020.1751279

    Article  Google Scholar 

  10. de Oliveira F, Gonçalves LP, Belgacem MN, Frollini E (2020) Polyurethanes from plant- and fossil-sourced polyols: Properties of neat polymers and their sisal composites. Ind Crop Prod 155:112821. https://doi.org/10.1016/J.INDCROP.2020.112821

    Article  Google Scholar 

  11. Ghorbani M, Konnerth J, van Herwijnen HWG, Zinovyev G, Budjav E, Requejo Silva A, Liebner F (2018) Commercial lignosulfonates from different sulfite processes as partial phenol replacement in PF resole resins. J Appl Polym Sci 135:1–11. https://doi.org/10.1002/app.45893

    Article  Google Scholar 

  12. Hu L, Zhou Y, Zhang M, Liu R (2012) Characterization and properties of a lignosulfonate-based phenolic foam. BioResources. 7:554–564. https://doi.org/10.15376/biores.7.1.554-564

    Article  Google Scholar 

  13. Megiatto JD, Cerrutti BM, Frollini E (2016) Sodium lignosulfonate as a renewable stabilizing agent for aqueous alumina suspensions. Int J Biol Macromol 82:927–932. https://doi.org/10.1016/J.IJBIOMAC.2015.11.004

    Article  Google Scholar 

  14. de Oliveira F, Ramires EC, Frollini E, Belgacem MN (2015) Lignopolyurethanic materials based on oxypropylated sodium lignosulfonate and castor oil blends. Ind Crop Prod 72:77–86. https://doi.org/10.1016/J.INDCROP.2015.01.023

    Article  Google Scholar 

  15. de Oliveira F, da Silva CG, Ramos LA, Frollini E (2017) Phenolic and lignosulfonate-based matrices reinforced with untreated and lignosulfonate-treated sisal fibers. Ind Crop Prod 96:30–41. https://doi.org/10.1016/J.INDCROP.2016.11.027

    Article  Google Scholar 

  16. Ruwoldt J (2020) A Critical Review of the Physicochemical Properties of Lignosulfonates: Chemical Structure and Behavior in Aqueous Solution, at Surfaces and Interfaces. Surfaces 2020(3):622–648. https://doi.org/10.3390/surfaces3040042

    Article  Google Scholar 

  17. Aro T, Fatehi P (2017) Production and Application of Lignosulfonates and Sulfonated Lignin. ChemSusChem 10:1861–1877. https://doi.org/10.1002/cssc.201700082

    Article  Google Scholar 

  18. Kaschuk JJ, Ferracini TV, Nitschke M, Frollini E (2023) Lignosulfonate as biosurfactant for the enzymatic conversion of sisal lignocellulosic fiber into fermentable sugars. Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-04318-2

  19. Gonçalves S, Ferra J, Paiva N, Martins J, Carvalho LH, Magalhães FD (2021) Lignosulphonates as an Alternative to Non-Renewable Binders in Wood-Based Materials. Polymers (Basel) 30:4196. https://doi.org/10.3390/polym13234196

    Article  Google Scholar 

  20. Ganewatta MS, Lokupitiya HN, Tang C (2019) Lignin biopolymers in the age of controlled polymerization. Polymers (Basel) 11. https://doi.org/10.3390/polym11071176

  21. Gallo JMR, Trapp MA (2017) The chemical conversion of biomass-derived saccharides: An overview. J Braz Chem Soc 28:1586–1607. https://doi.org/10.21577/0103-5053.20170009

    Article  Google Scholar 

  22. Serrano-Ruiz JC (2020) Biomass: A Renewable Source of Fuels, Chemicals and Carbon Materials. Molecules 25:5217. https://doi.org/10.3390/molecules25215217

    Article  Google Scholar 

  23. Ohra-Aho T, Rohrbach L, Winkelman JGM, Heeres HJ, Mikkelson A, Oasmaa A, Van De Beld B, Leijenhorst EJ, Heeres H (2021) Evaluation of Analysis Methods for Formaldehyde, Acetaldehyde, and Furfural from Fast Pyrolysis Bio-oil. Energy Fuel 35:18583–18591. https://doi.org/10.1021/acs.energyfuels.1c02208

    Article  Google Scholar 

  24. Sarika PR, Nancarrow P, Khansaheb A, Ibrahim T (2020) Bio-Based Alternatives to Phenol and Formaldehyde for the Production of Resins. Polym 12:1–24

    Google Scholar 

  25. B.W. Darvell, More Chemistry, Mater. Sci. Dent (2018) 771–789. https://doi.org/10.1016/B978-0-08-101035-8.50030-4.

  26. Lee CH, Khalina A, Lee SH (2021) Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: A review. Polymers (Basel) 13:1–22. https://doi.org/10.3390/polym13030438

    Article  Google Scholar 

  27. Pereira PHF, De Freitas Rosa M, Cioffi MOH, De Carvalho Benini KCC, Milanese AC, Voorwald HJC, Mulinari DR (2015) Vegetal fibers in polymeric composites: A review. Polimeros 25:9–22. https://doi.org/10.1590/0104-1428.1722

    Article  Google Scholar 

  28. Rojo E, Alonso MV, Oliet M, Del Saz-Orozco B, Rodriguez F (2015) Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Compos Part B Eng 68:185–192. https://doi.org/10.1016/J.COMPOSITESB.2014.08.047

    Article  Google Scholar 

  29. FAO (2021) World Food and Agriculture – Statistical Yearbook 2021. https://doi.org/10.4060/cb4477en

    Book  Google Scholar 

  30. Khodafarin R, Tavasoli A, Rashidi A (2020) Single-step conversion of sugarcane bagasse to biofuel over Mo-supported graphene oxide nanocatalyst. Biomass Convers Biorefinery:20–23. https://doi.org/10.1007/s13399-020-01037-w

  31. Awais M, Li W, Munir A, Omar MM, Ajmal M (2021) Experimental investigation of downdraft biomass gasifier fed by sugarcane bagasse and coconut shells. Biomass Convers Biorefinery 11:429–444. https://doi.org/10.1007/s13399-020-00690-5

    Article  Google Scholar 

  32. da Silva DDV, Machado E, Danelussi O, dos Santos MG, da Silva SS, Dussán KJ (2022) Repeated-batch fermentation of sugarcane bagasse hemicellulosic hydrolysate to ethanol using two xylose-fermenting yeasts. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-02199-x

  33. Huong LM, Trung TQ, Tuan TT, Viet NQ, Dat NM, Nghiem DG, Thinh DB, Tinh NT, Oanh DTY, Phuong NT, Nam HM, Phong MT, Hieu NH (2022) Surface functionalization of graphene oxide by sulfonation method to catalyze the synthesis of furfural from sugarcane bagasse. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-02272-5

  34. de Souza Queiroz S, Jofre FM, dos Santos HA, Hernández-Pérez AF, Felipe MDGDA (2021) Xylitol and ethanol co-production from sugarcane bagasse and straw hemicellulosic hydrolysate supplemented with molasses, Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-021-01493-y

  35. Hernández-Pérez AF, Antunes FAF, dos Santos JC, da Silva SS, Felipe MDGDA (2020) Valorization of the sugarcane bagasse and straw hemicellulosic hydrolysate through xylitol bioproduction: effect of oxygen availability and sucrose supplementation as key factors, Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-020-00993-7

  36. da Silva CG, de Oliveira F, Frollini E (2019) Sugarcane Bagasse Fibers Treated and Untreated: Performance as Reinforcement in Phenolic-Type Matrices Based on Lignosulfonates. Waste and Biomass Valorization 10:3515–3524. https://doi.org/10.1007/s12649-018-0365-z

    Article  Google Scholar 

  37. da Silva CG, Frollini E (2020) Unburned Sugarcane Bagasse: Bio-based Phenolic Thermoset Composites as an Alternative for the Management of this Agrowaste. J Polym Environ 28:3201–3210. https://doi.org/10.1007/s10924-020-01848-y

    Article  Google Scholar 

  38. Md Salim R, Asik J, Sarjadi MS (2021) Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci Technol 55:295–313. https://doi.org/10.1007/s00226-020-01258-2

    Article  Google Scholar 

  39. Klein SE, Rumpf J, Kusch P, Albach R, Rehahn M, Witzleben S, Schulze M (2018) Unmodified kraft lignin isolated at room temperature from aqueous solution for preparation of highly flexible transparent polyurethane coatings. RSC Adv 8:40765–40777. https://doi.org/10.1039/C8RA08579J

    Article  Google Scholar 

  40. Zhou H, Yang D, Zhu JY (2016) Molecular Structure of Sodium Lignosulfonate from Different Sources and their Properties as Dispersant of TiO2 Slurry. J Dispers Sci Technol 37:296–303. https://doi.org/10.1080/01932691.2014.989572

    Article  Google Scholar 

  41. Palamarchuk IA, Brovko OS, Bogolitsyn KG, Boitsova TA, Ladesov AV, Ivakhnov AD (2015) Relationship of the Structure and Ion-Exchange Properties of Polyelectrolyte Complexes Based on Biopolymers. Russ J Appl Chem 88:109–114. https://doi.org/10.1134/S1070427215010152

    Article  Google Scholar 

  42. Nurazzi NM, Asyraf MRM, Rayung M, Norrrahim MNF, Shazleen SS, Rani MSA, Shafi AR, Aisyah HA, Radzi MHM, Sabaruddin FA, Ilyas RA, Zainudin ES, Abdan K (2021) Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments. Polymers (Basel) 13. https://doi.org/10.3390/polym13162710

  43. Caydamli Y, Heudorfer K, Take J, Podjaski F, Middendorf P, Buchmeiser MR (2021) Transparent fiber-reinforced composites based on a thermoset resin using liquid composite molding (Lcm) techniques. Materials (Basel) 14. https://doi.org/10.3390/ma14206087

  44. G.S. Divya, B. Suresha, Recent Developments of Natural Fiber Reinforced Thermoset Polymer Composites and their Mechanical Properties, Indian J. Adv. Chem Sci (2016) 267–274. http://www.ijacskros.com/artcles/IJACS-2S-56.pdf.

  45. Sanjay MR, Arpitha GR, Senthamaraikannan P, Kathiresan M, Saibalaji MA, Yogesha B (2019) The Hybrid Effect of Jute/Kenaf/E-Glass Woven Fabric Epoxy Composites for Medium Load Applications: Impact, Inter-Laminar Strength, and Failure Surface Characterization. J Nat Fibers 16:600–612. https://doi.org/10.1080/15440478.2018.1431828

    Article  Google Scholar 

  46. Ornaghi HL, Neves RM, Monticeli FM, Thomas S (2022) Modeling of dynamic mechanical curves of kenaf/polyester composites using surface response methodology. J Appl Polym Sci. https://doi.org/10.1002/app.52078

  47. Hernandez TPA, Mills AR, Yazdani Nezhad H (2021) Shear driven deformation and damage mechanisms in High-performance carbon Fibre-reinforced thermoplastic and toughened thermoset composites subjected to high strain loading. Compos Struct 261:113289. https://doi.org/10.1016/j.compstruct.2020.113289

    Article  Google Scholar 

  48. da Silva CG, Oliveira F, Ramires EC, Castellan A, Frollini E (2012) Composites from a forest biorefinery byproduct and agrofibers: Lignosulfonate-phenolic type matrices reinforced with sisal fibers. TAPPI J 11:41–49. https://doi.org/10.32964/TJ11.9.41

    Article  Google Scholar 

  49. Cintil JC, Jithin J, Lovely M, Koetz J, Thomas S (2014) Nanofibril reinforced unsaturated polyester nanocomposites:Morphology, mechanical and barrier properties, viscoelastic behaviorand polymer chain confinement. Ind Crop Prod 56:246–254. https://doi.org/10.1016/j.indcrop.2014.03.005

    Article  Google Scholar 

Download references

Funding

CNPq (National Counsel of Technological and Scientific Development, Brazil): research productivity fellowship to E.F. (Process 309692/2017-2) and financial support (Process n° 403494/2021-4)

Author information

Authors and Affiliations

Authors

Contributions

Cristina Gomes da Silva: Conceptualization, Methodology, Formal analysis, Investigation, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization

Bianca Groner Queiroz: Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization

Elisabete Frollini: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Writing - Original Draft, Writing - Review & Editing, Visualization, Project administration, Funding acquisition

Corresponding author

Correspondence to Elisabete Frollini.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, C.G., Queiroz, B.G. & Frollini, E. Lignocellulosic biomass: synthesis of lignophenolic thermosets with simultaneous formation of composites reinforced by sugarcane bagasse fibers. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04809-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04809-2

Keywords

Navigation