Log in

One-pot catalytic conversion of sucrose to 1,2-propanediol over titania supported Ni-Ce metal catalyst under milder reaction conditions

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The increased energy demand and decreasing fossil resources have driven the research community to look into a sustainable, green process to meet the energy demands. India being one of the top producers of sugarcane derived sucrose, and conversion of surplus sucrose to value chemicals is always an advantage. 5%Ni-15%Ce/TiO2 catalyst is found to produce high yield of 1,2-PDO (~ 74%) under very mild reaction condition of 180 °C, 30 bar H2 for 3-h reaction time. The characterization of the catalyst by using various physicochemical methods indicates the synergy between Ni-Ce bimetal which enhances the selective production of glycol. The low temperature and pressure requirement and the advantage of being the one-pot process will always attract the future scope of commercialization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

Data availability

All the important data are included in the main manuscript. The remaining data to support the observations are included in the supporting information. All the prior knowledge is cited wherever necessary.

References

  1. Ong HC, Chen W-H, Farooq A et al (2019) Catalytic thermochemical conversion of biomass for biofuel production: a comprehensive review. Renew Sust Energ Rev 113:109266. https://doi.org/10.1016/j.rser.2019.109266

    Article  Google Scholar 

  2. Ren X-Y, Feng X-B, Cao J-P et al (2020) Catalytic conversion of coal and biomass volatiles: a Review. Energy & Fuels 34:10307–10363. https://doi.org/10.1021/acs.energyfuels.0c01432

    Article  Google Scholar 

  3. Dai L, Wang Y, Liu Y et al (2020) A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass. Sci Total Environ 749:142386. https://doi.org/10.1016/j.scitotenv.2020.142386

    Article  Google Scholar 

  4. Tchapda A, Pisupati S (2014) A review of thermal co-conversion of coal and biomass/waste. Energies 7:1098–1148. https://doi.org/10.3390/en7031098

    Article  Google Scholar 

  5. Wang A, Austin D, Song H (2019) Catalytic upgrading of biomass and its model compounds for fuel production. Curr Org Chem 23:517–529. https://doi.org/10.2174/1385272823666190416160249

    Article  Google Scholar 

  6. Queneau Y, Jarosz S, Lewandowski B, Fitremann J (2007) Sucrose chemistry and applications of Sucrochemicals. Adv Carbohydr Chem Biochem 217–292. https://doi.org/10.1016/s0065-2318(07)61005-1

  7. Chibbar RN, Jaiswal S, Gangola M, Båga M (2016) Carbohydrate metabolism. Encycl Food Grains 161–173. https://doi.org/10.1016/b978-0-12-394437-5.00089-9

  8. Cooper JM (2006) Sucrose. Optim Sweet Taste Foods 135–152. https://doi.org/10.1533/9781845691646.2.135

  9. India emerges as the world’s largest producer and consumer of sugar and world’s 2nd largest exporter of sugar. In: Press Information Bureau. https://pib.gov.in/PressReleasePage.aspx?PRID=1865320. Accessed 5 Oct 2022

  10. About sugar: International sugar organization. In: About Sugar | International Sugar Organization. https://www.isosugar.org/sugarsector/sugar. Accessed 9 Oct 2022

  11. Propylene glycol market analysis: plant capacity, production, operating efficiency, demand & supply, end-use industries, grade, sales channel, regional demand, 2015-2035. In: Propylene Glycol Market Size, Growth, Share & Forecast, 2035. https://www.chemanalyst.com/industry-report/propylene-glycol-market-87. Accessed 21 Oct 2022

  12. (2022) Ethylene glycol and propylene glycol toxicity: what is propylene glycol? In: Centers for Disease Control and Prevention. https://www.atsdr.cdc.gov/csem/ethylene-propylene-glycol/propylene_glycol.html. Accessed 20 Feb 2023

  13. Toscano G, Cavalca L, Letizia Colarieti M et al (2012) Aerobic biodegradation of propylene glycol by soil bacteria. Biodegradation 24:603–613. https://doi.org/10.1007/s10532-012-9609-y

    Article  Google Scholar 

  14. Sullivan CJ, Kuenz A, Vorlop K-D (2018) Propanediols. Biodegradation 1–15. https://doi.org/10.1002/14356007.a22_163.pub2

  15. Sara M, Rouissi T, Brar SK, Blais JF (2016) Propylene glycol. Platform Chem Biorefinery 77–100. https://doi.org/10.1016/b978-0-12-802980-0.00005-5

  16. Balachandran Kirali AA, Sreekantan S, Marimuthu B (2022) CE promoted Cu/γ-Al2O3 catalysts for the enhanced selectivity of 1,2-propanediol from catalytic hydrogenolysis of glucose. Catal Commun 165:106447. https://doi.org/10.1016/j.catcom.2022.106447

    Article  Google Scholar 

  17. Banu M, Sivasanker S, Sankaranarayanan TM, Venuvanalingam P (2011) Hydrogenolysis of sorbitol over Ni and Pt loaded on NaY. Catal Commun 12:673–677. https://doi.org/10.1016/j.catcom.2010.12.026

    Article  Google Scholar 

  18. Liang D, Liu C, Deng S et al (2014) Aqueous phase hydrogenolysis of glucose to 1,2-propanediol over copper catalysts supported by sulfated spherical carbon. Catal Commun 54:108–113. https://doi.org/10.1016/j.catcom.2014.05.027

    Article  Google Scholar 

  19. Liu C, Zhang C, Sun S et al (2015) Effect of WOx on bifunctional Pd–WOx/Al2O3 catalysts for the selective hydrogenolysis of glucose to 1,2-propanediol. ACS Catal 5:4612–4623. https://doi.org/10.1021/acscatal.5b00800

    Article  Google Scholar 

  20. Liu C, Zhang C, Hao S et al (2016) WOx modified Cu/Al2O3 as a high-performance catalyst for the hydrogenolysis of glucose to 1,2-propanediol. Catal Today 261:116–127. https://doi.org/10.1016/j.cattod.2015.06.030

    Article  Google Scholar 

  21. Wang S, Jiang J, Gu M et al (2023) Catalytic production of 1,2-propanediol from sucrose over a functionalized Pt/deAl-beta zeolite catalyst. RSC Adv 13:734–741. https://doi.org/10.1039/d2ra07097a

    Article  Google Scholar 

  22. Sreekantan S, Balachandran Kirali AA, Marimuthu B (2022) Catalytic conversion of sucrose to 1,2-propanediol over alumina-supported Ni–Mo bimetallic catalysts. Sustain Energy Fuels 6:3681–3689. https://doi.org/10.1039/d2se00610c

    Article  Google Scholar 

  23. Sahu P, Eniyarppu S, Ahmed M et al (2017) Cerium ion-exchanged layered MCM-22: preparation, characterization and its application for esterification of fatty acids. J Porous Mater. 25:999–1005. https://doi.org/10.1007/s10934-017-0510-2

    Article  Google Scholar 

  24. Sreenavya A, Aswin P, Ganesh V et al (2022a) Facile water-free synthesis of noble metal-containing hydrotalcites-derived materials and their application for Hydrotreatment of Anisole. Mater Today Sustain 18:100153. https://doi.org/10.1016/j.mtsust.2022.100153

    Article  Google Scholar 

  25. Sreenavya A, Ganesh V, Venkatesha NJ, Sakthivel A (2022b) Hydrogenation of biomass derived furfural using Ru-Ni-Mg–Al-hydrotalcite material. Biomass Convers. https://doi.org/10.1007/s13399-022-02641-8b) a)

  26. Sakthivel A, Nimisha NP, Sreenavya A, Surabhidevi S, Mathew J, Preeti S, Venkatesha NJ (2022) Ruthenium-containing MCM-22 and ITQ-2 as potential redox catalysts for benzhydrol oxidation. J. Porous Mater. 29(2):591–599. https://doi.org/10.1007/s10934-021-01182-1

    Article  Google Scholar 

  27. Sreenavya A, Sahu A, Sakthivel A (2020) Hydrogenation of lignin-derived phenolic compound eugenol over ruthenium-containing nickel hydrotalcite-type materials. Ind Eng Chem Res 59:11979–11990. https://doi.org/10.1021/acs.iecr.0c01106

    Article  Google Scholar 

  28. Kominami H, Kato J, Takada Y et al (1997) Novel synthesis of microcrystalline titanium(IV) oxide having high thermal stability and ultra-high photocatalytic activity: thermal decomposition of titanium(IV) alkoxide in organic solvents. Catal Lett 46:235–240. https://doi.org/10.1023/a:1019022719479

    Article  Google Scholar 

  29. Palcheva R, Dimitrov L, Tyuliev G et al (2013) TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity. Appl Surf Sci 265:309–316. https://doi.org/10.1016/j.apsusc.2012.11.001

    Article  Google Scholar 

  30. Nolan M (2013) Modifying Ceria (111) with a TiO2 nanocluster for enhanced reactivity. J Chem Phys 139:184710. https://doi.org/10.1063/1.4829758

    Article  Google Scholar 

  31. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) Catal Lett 44:83–87. https://doi.org/10.1023/a:1018925008633

    Article  Google Scholar 

  32. Sui X-L, Wang Z-B, Yang M et al (2014) Investigation on C–TiO2 nanotubes composite as Pt catalyst support for Methanol Electrooxidation. J Power Sources 255:43–51. https://doi.org/10.1016/j.jpowsour.2014.01.001

    Article  Google Scholar 

  33. Lin SD, Bollinger M, Vannice MA (1993) Low temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts. Catal Lett 17:245–262. https://doi.org/10.1007/bf00766147

    Article  Google Scholar 

  34. Bagheri S, Muhd Julkapli N, Bee Abd Hamid S (2014) Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci World J 2014:1–21. https://doi.org/10.1155/2014/727496

    Article  Google Scholar 

  35. Bagheri S, Shameli K, Abd Hamid SB (2013) Synthesis and characterization of Anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. J Chem 2013:1–5. https://doi.org/10.1155/2013/848205

    Article  Google Scholar 

  36. Yu J, Liang J, Chen X et al (2021) Synergistic effect of Ni/W/Cu on MgAl2O4 for one-pot hydrogenolysis of cellulose to ethylene glycol at a low H2 pressure. ACS Omega 6:11650–11659. https://doi.org/10.1021/acsomega.1c00979

    Article  Google Scholar 

  37. Sreekantan S, Arunima Kirali A, Marimuthu B (2021) Enhanced one-pot selective conversion of cellulose to ethylene glycol over NAZSM-5 supported metal catalysts. New J Chem 45:19244–19254. https://doi.org/10.1039/d1nj03257g

    Article  Google Scholar 

  38. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  39. Sirivallop A, Areerob T, Chiarakorn S (2020) Enhanced visible light photocatalytic activity of N and Ag doped and Co-doped TiO2 synthesized by using an in-situ solvothermal method for gas phase ammonia removal. Catalysts 10:251. https://doi.org/10.3390/catal10020251

    Article  Google Scholar 

  40. Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20:389–394. https://doi.org/10.1021/ar00143a001

    Article  Google Scholar 

  41. Seemala B, Cai CM, Wyman CE, Christopher P (2017) Support induced control of surface composition in Cu–Ni/TiO2 catalysts enables high yield Co-conversion of HMF and furfural to methylated furans. ACS Catal 7:4070–4082. https://doi.org/10.1021/acscatal.7b01095

    Article  Google Scholar 

  42. Omotoso T, Boonyasuwat S, Crossley S (2014) Understanding the role of TiO2 crystal structure on the enhanced activity and stability of Ru/TiO2 Catalysts for the conversion of lignin-derived oxygenates. Green Chem 16:645–652. https://doi.org/10.1039/c3gc41377b

    Article  Google Scholar 

  43. Nelson RC, Baek B, Ruiz P et al (2015) Experimental and theoretical insights into the hydrogen-efficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2. ACS Catal 5:6509–6523. https://doi.org/10.1021/acscatal.5b01554

    Article  Google Scholar 

  44. Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L (2001) In situ FTIR spectra of pyridine adsorbed on SiO2–Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloids Surf A Physicochem Eng Asp 190:261–274. https://doi.org/10.1016/s0927-7757(01)00690-2

    Article  Google Scholar 

  45. Du P, Zheng P, Song S et al (2016) Synthesis of a novel micro/mesoporous composite material beta-FDU-12 and its hydro-upgrading performance for FCC gasoline. RSC Adv 6:1018–1026. https://doi.org/10.1039/c5ra19731g

    Article  Google Scholar 

  46. Bezrodna T, Puchkovska G, Shimanovska V et al (2003) Pyridine-TiO2 surface interaction as a probe for surface active centers analysis. Appl Surf Sci 214:222–231. https://doi.org/10.1016/s0169-4332(03)00346-5

    Article  Google Scholar 

  47. Zhang T, Guo X, Zhao Z (2018) Glucose-assisted preparation of a nickel–molybdenum carbide bimetallic catalyst for chemoselective hydrogenation of nitroaromatics and hydrodeoxygenation of m-cresol. ACS Appl Nano Mater 1:3579–3589. https://doi.org/10.1021/acsanm.8b00735

    Article  Google Scholar 

  48. Rangaswamy A, Sudarsanam P, Reddy BM (2015) Rare earth metal doped CeO2-based catalytic materials for diesel soot oxidation at lower temperatures. J Rare Earths 33:1162–1169. https://doi.org/10.1016/s1002-0721(14)60541-x

    Article  Google Scholar 

  49. Putla S, Amin MH, Reddy BM et al (2015) MnOx nanoparticle-dispersed CeO2 Nanocubes: a remarkable heteronanostructured system with unusual structural characteristics and superior catalytic performance. ACS Appl Mater Interfaces 7:16525–16535. https://doi.org/10.1021/acsami.5b03988

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CSIR-NCL for the laboratory facilities and the Centre of Material Characterization for the characterizations. The authors also thank Dr. T Raja and Mr. Siva Prasad for py-FTIR analysis. We would like to thank Dr. Arundhathi Racha, BPCL, for TPD analysis.

Author information

Authors and Affiliations

Authors

Contributions

Mr. Sreejith Sreekantan (conceptualization, experimental, characterization, and manuscript writing) and Mr. Sarath Sreedharan (experimental, characterization) have contributed equally to this work. Mr. Parmeshwar Yadav has contributed for the revision of the manuscript. All other authors have read and approved for the submission.

Corresponding author

Correspondence to Banu Marimuthu.

Ethics declarations

Ethical Approval

This research involves no study including and/or related to animals and/or human beings.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2400 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreekantan, S., Sreedharan, S., Kirali, A.A.B. et al. One-pot catalytic conversion of sucrose to 1,2-propanediol over titania supported Ni-Ce metal catalyst under milder reaction conditions. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04781-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04781-x

Keywords

Navigation