Log in

Development of sustainable epoxy composites using foxtail millet husk biosilica and basalt fibre for wind turbine blade applications

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The purpose of this research was to formulate epoxy composites with basalt fibre and foxtail millet biosilica reinforcement for the use in horizontal and vertical wind turbine blade manufacturing. The study primarily focused on the effect of adding ceramic biosilica on mechanical, wear, flammability and thermal degradation behaviour when reinforcing with basalt fibre in epoxy resin. The biosilica particles were prepared via thermo-chemical process and silane surface-treated subsequently. The composites were developed using hand layup method and evaluated in accordance with the relevant American Society for Testing and Materials (ASTM) criteria. According to the results, the confirmation analysis confirmed the biosilica formation with via FTIR and XRD analysis. The size of biosilica produced was between 10 and 15 nm. It is further noted that the maximum values for tensile, flexural, compression, ILSS and Izod impact for composite designation EBB2 are 147 MPa, 182 MPa, 155 MPa, 27.1 MPa and 5.85 J. The SEM fractographs revealed highly reacted phases of biosilica as well as basalt fibre. It is further noted that the composite designation EBB3 has the lowest sp. wear loss of 0.0110 mm3/Nm and coefficient of friction (COF) of about 0.266. Moreover, the EBB3 composite designation also exhibits improved thermal degradation stability among all composite designations with a lowest combustion rate of 5.26 mm/min. Such improved load bearing effect, resistance to wear and thermally stable sustainable composites could be employed as working material for wind turbine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data are within the manuscript.

References

  1. Meena et al (2021) Global Scenario Of Millets Cultivation. https://doi.org/10.1007/978-981-16-0676-2_2

  2. Dharmavarapu P, Reddy MBSS (2021) Emergent Mater 4:1377–1386. https://doi.org/10.1007/s42247-021-00266-7

    Article  Google Scholar 

  3. Dharmavarapu P, Reddy MBSS (2020) J Fail Anal Preven 20:1719–1725. https://doi.org/10.1007/s11668-020-00979-7

    Article  Google Scholar 

  4. Madhu et al (2023). Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-03792-y

    Article  Google Scholar 

  5. Alshahrani et al (2022) Prog Org Coat 172:107080. https://doi.org/10.1016/j.porgcoat.2022.107080

    Article  Google Scholar 

  6. Nugraha et al (2022) Polymers (Basel) 14(23):5138. https://doi.org/10.3390/polym14235138

    Article  Google Scholar 

  7. Miliket TA et al (2022) Heliyon 8(3) https://doi.org/10.1016/j.heliyon.2022.e09092

  8. Kalagi GR et al (2018) Mater Today Proc 5.1:2588–2596. https://doi.org/10.1016/j.matpr.2017.11.043

    Article  Google Scholar 

  9. Reddy SSP et al (2021) Mater Today: Proc 46:2827–2830. https://doi.org/10.1016/j.matpr.2021.02.745

    Article  Google Scholar 

  10. Park H (2016) Adv Compos Mater 25(2):125–142. https://doi.org/10.1080/09243046.2015.1052186

    Article  MathSciNet  Google Scholar 

  11. Batu T et al (2020) Adv Sci Technol Res J 14(2) https://doi.org/10.12913/22998624/118201

  12. Balasubramanian et al (2020) Materials 13:5126. https://doi.org/10.3390/ma13225126

    Article  Google Scholar 

  13. Khandelwal S, Rhee KY (2020) Compos Part B: Eng 192:108011. https://doi.org/10.1016/j.compositesb.2020.108011

    Article  Google Scholar 

  14. Fegade V et al (n.d.) In AIP Conf Proc 2393(1):020172. AIP Publishing LLC. https://doi.org/10.1063/5.0074178

  15. Derradjiet al. (2022) Polymers 0(0). https://doi.org/10.1177/09540083221143688

  16. Jain et al (2019) Mater Res Express 6:105373. https://doi.org/10.1088/2053-1591/ab4332

    Article  Google Scholar 

  17. Prabhu et al (2022). Bio Conv Bioref. https://doi.org/10.1007/s13399-021-02177-3

    Article  Google Scholar 

  18. Neopoleanet et al (2022). Silicon. https://doi.org/10.1007/s12633-021-01634-y

    Article  Google Scholar 

  19. Mahalingamet et al (2022) Silicon 14:8129–8139. https://doi.org/10.1007/s12633-021-01549-8

    Article  Google Scholar 

  20. Ben et al (2021) Silicon 13:1703–1712. https://doi.org/10.1007/s12633-020-00569-0

    Article  Google Scholar 

  21. Arun et al (2020). Bio Conv Bioref. https://doi.org/10.1007/s13399-020-00938-0

    Article  Google Scholar 

  22. Sharma N, Niranjan K (2018) Food Rev Intl 34(4):329–363. https://doi.org/10.1080/87559129.2017.1290103

    Article  Google Scholar 

  23. Peng R, Zhang B (2021) Trends Plant Sci 26(3):199–201. https://doi.org/10.1016/j.tplants.2020.12.003

    Article  Google Scholar 

  24. Yang T et al (2022) Grain Oil Sci Technol. https://doi.org/10.1016/j.gaost.2022.06.005

  25. Kour D et al (2020) Environ Sustain 3:23–34. https://doi.org/10.1007/s10776-020-00491-7

    Article  Google Scholar 

  26. Gairola et al (2022) Ind Crops Prod 182:114891. https://doi.org/10.1016/j.indcrop.2022.114891

    Article  Google Scholar 

  27. Reddy et al (n.d.) J Nat Fibers 19(5):1851–1863. https://doi.org/10.1080/15440478.2020.1788494

  28. Hassan et al (2022) J Ind Text 52:15280837221137382. https://doi.org/10.1177/15280837221137382

    Article  Google Scholar 

  29. Alshahrani H, Prakash VRA (2022) Prog Org Coatings 172:107080. https://doi.org/10.1016/j.porgcoat.2022.107080

    Article  Google Scholar 

  30. Poomathi S, Sheeju Selva Roji S (2022) Biomass Convers Biorefinery 1–9. https://doi.org/10.1007/s13399-022-02867-6

  31. Babu JS et al (n.d.) Biomass Convers Biorefinery 1–12. https://doi.org/10.1007/s13399-022-02653-4

  32. Jayabalakrishnan D (2023) Biomass Convers Biorefinery 1–9. https://doi.org/10.1007/s13399-023-04055-6

  33. Rajadurai A (2016) Appl Surf Sci 384:99–106. https://doi.org/10.1016/j.apsusc.2016.04.185

    Article  Google Scholar 

  34. Prakash VA, Viswanthan R (2019) Compos Part A: Appl Sci Manuf 118:317–326. https://doi.org/10.1016/j.compositesa.2019.01.008

    Article  Google Scholar 

  35. Alshahrani H, Prakash VA (2022) Int J Biol Macromol 223:851–859. https://doi.org/10.1016/j.ijbiomac.2022.10.272

    Article  Google Scholar 

  36. ASTM, ASfTa M (2017) “ASTM D3039-standard test method for tensile properties of polymer matrix composite materials.” Book ASTM D3039-standard test method for tensile properties of polymer matrix composite materials (ASTM International, 2017) 360

  37. ASTM, Standard (1997) “Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM D790.” Annual book of ASTM Standards

  38. Standard ASTM (2008) “D3410.” Standard test method for compressive properties of polymer matrix composite materials with unsupported gage section by shear loading. ASTM International, West Conshohocken, PA

  39. Astm D (2010) ASTM D 256–10 standard test methods for determining the Izod pendulum impact resistance of plastics. American Society for Testing and Materials, West Conshohocken, PA

    Google Scholar 

  40. American Society for Testing and Materials (2010) “ASTM D2240–05 standard test method for rubber property: durometer hardness.” West Conshohocken: ASTM

  41. Standard ASTM (2006) “G99, Standard test method for wear testing with a pin-on-disk apparatus.” ASTM International, West Conshohocken, PA

  42. Extinguishing, Self (1988) “Provide wall guards with a CC1 classification, as tested in accordance with the procedures specified in ASTM D-635–74.” Standard Test Method for Rate of Burning and/or Extent and Time of Burning of Self-Supporting plastics in a Horizontal Position, as referenced in UBC 52–4

  43. Valero MF, Ortegón Y (2015) Synthesis, characterization, and in vitro degradation”. J Elastomers Plast 47(4):360–369

    Article  Google Scholar 

  44. Balaji et al (2022) Silicon 14:12773–12779. https://doi.org/10.1007/s12633-022-01981-4

    Article  Google Scholar 

  45. Sivamurugan et al (2022). Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-03342-y

    Article  Google Scholar 

  46. Vishnuvarthanan et al (2020). Silicon. https://doi.org/10.1007/s12633-020-00732-7

    Article  Google Scholar 

  47. Lamhour K et al (2022) J Compos Mater 56(21):3253–3268. https://doi.org/10.1177/00219983221111493

    Article  Google Scholar 

  48. Lamhour K et al (2022) J Compos Mater 56(21):3253–3268. https://doi.org/10.1002/pc.23700

    Article  Google Scholar 

  49. Arun et al (2021). Silicon. https://doi.org/10.1007/s12633-021-01456-y

    Article  Google Scholar 

  50. Neopolean P, Karuppasamy K (2022) Silicon 14(15):9331–9340. https://doi.org/10.1007/s12633-021-01634-y

    Article  Google Scholar 

  51. Karthigairajan M et al (2021) Silicon 13:4421–4430. https://doi.org/10.1007/s12633-020-00772-z

    Article  Google Scholar 

  52. Kumar S et al (n.d.) Compos Interfaces 28(9):905–923. https://doi.org/10.1080/09276440.2020.1833594

  53. Kavitha D et al (n.d.) Mater Chem Phys 263:124225.https://doi.org/10.1016/j.matchemphys.2021.124225

  54. Kanaginahal GM et al (2023) Heliyon e12950. https://doi.org/10.1016/j.heliyon.2023.e12950

Download references

Author information

Authors and Affiliations

Authors

Contributions

Shenbagaraman S.—research.

B. K. Gnanavel—research, testing and drafting.

Corresponding author

Correspondence to Shenbagaraman S.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S, S., Gnanavel, B.K. Development of sustainable epoxy composites using foxtail millet husk biosilica and basalt fibre for wind turbine blade applications. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04656-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04656-1

Keywords

Navigation