Log in

Physico-chemical, thermal, and morphological characterization of biomass-based novel microcrystalline cellulose from Nelumbo nucifera leaf: Biomass to biomaterial approach

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The identification of novel cellulosic materials is imperative at the moment to ensure high-quality materials for building polymer composites that possess high-performance. This study was conducted to explore the specific properties of a novel micro-sized cellulosic fillers obtained from Nelumbo nucifera leaves and thereby to establish its feasibility as composite reinforcement. The physico-chemical, surface and thermal behaviours are investigated for cellulosic micro fillers that extracted through thermo-chemical method. The density of the extracted fillers was analysed to realize its mode of applicability. Whereas chemical characterization studies were indispensable to explore the chemical nature of the material. Of which, X-ray diffraction analysis proved that Nelumbo nucifera leaves has good crystallinity index (75.9%) and crystalline size (8.2 nm). The Fourier Transform Infrared Spectrometer analysis showed that the material possesses high cellulosic contents rather very less non-cellulosic residues. Scanning electron microscope images disclosed the roughness pattern of the filler surface and subsequently the average particle size of the micro fillers is identified as 23.253±6.55μm through ImageJ tool. At the same time, atomic force microscopy images revealed that micro cellulose extracted has desired average roughness (28.296 μm). Though, the suitable surface features of Nelumbo nucifera leaves are found to be virtuous for providing interfacial bonding with other matrices during composite formulation. Along with that, good thermal stability (215°C) offers its processing and application even at relatively higher temperatures. Since, the present study has accomplished that Nelumbo nucifera leaves is a promising alternative source of micro cellulose for traditionally used sources like wood, hemp, and cotton, for the extraction of micro cellulose, which could be further used as a promising alternative to synthetic reinforcements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262. https://doi.org/10.1007/s10570-013-0007-3

    Article  Google Scholar 

  2. Thulasisingh A, Kannaiyan S, Pichandi K (2021) Cellulose nanocrystals from orange and lychee biorefinery wastes and its implementation as tetracycline drug transporter. Biomass Convers Biorefin:1–14

  3. Fareez IM, Ibrahim NA, Wan Yaacob WMH et al (2018) Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching. Cellulose 25:4407–4421. https://doi.org/10.1007/s10570-018-1878-0

    Article  Google Scholar 

  4. Trache D, Hussin MH, Hui Chuin CT et al (2016) Microcrystalline cellulose: Isolation, characterization and bio-composites application—a review. Elsevier B.V

    Google Scholar 

  5. Sharma A, Thakur M, Bhattacharya M et al (2019) Commercial application of cellulose nano-composites – a review. Biotechnol Rep 21:e00316. https://doi.org/10.1016/j.btre.2019.e00316

    Article  Google Scholar 

  6. Terea H, Selloum D, Rebiai A, Bouafia A, Ben Mya O (2023) Preparation and characterization of cellulose/ZnO nanoparticles extracted from peanut shells: effects on antibacterial and antifungal activities. Biomass Conv Bioref 1:1–12. https://doi.org/10.1007/S13399-023-03959-7

    Article  Google Scholar 

  7. Haldar D, Purkait MK (2020) Micro and nanocrystalline cellulose derivatives of lignocellulosic biomass: a review on synthesis, applications and advancements. Carbohydr Polym 250:116937

    Article  Google Scholar 

  8. Singh Nee Nigam P, Pandey A (2009) Biotechnology for agro-industrial residues utilisation: Utilisation of agro-residues. Springer Netherlands

    Book  Google Scholar 

  9. Mihai M, Ton-That MT (2018) Valorization of triticale straw biomass as reinforcement in proficient polypropylene biocomposites. Waste Biomass Valoriz 9:1971–1983. https://doi.org/10.1007/S12649-017-9959-0/FIGURES/14

    Article  Google Scholar 

  10. Okolie JA, Nanda S, Dalai AK, Kozinski JA (2021) Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valoriz 12:2145–2169. https://doi.org/10.1007/S12649-020-01123-0/FIGURES/6

    Article  Google Scholar 

  11. Ramachandran S, Singh SK, Larroche C et al (2007) Oil cakes and their biotechnological applications - a review. Bioresour Technol 98:2000–2009. https://doi.org/10.1016/j.biortech.2006.08.002

    Article  Google Scholar 

  12. Prieto-García F, Jiménez-Muñoz E, Acevedo-Sandoval OA et al (2019) Obtaining and optimization of cellulose pulp from leaves of agave tequilana weber var. blue. Preparation of Handmade Craft Paper. Waste Biomass Valoriz 10:2379–2395. https://doi.org/10.1007/S12649-018-0262-5/TABLES/10

    Article  Google Scholar 

  13. Awad S, Zhou Y, Katsou E et al (2020) A critical review on date palm Tree (Phoenix dactylifera L.) fibres and their uses in bio-composites. Waste Biomass Valoriz 12:2853–2887. https://doi.org/10.1007/S12649-020-01105-2

    Article  Google Scholar 

  14. Song YR, Han AR, Lim TG et al (2019) Isolation, purification, and characterization of novel polysaccharides from lotus (Nelumbo nucifera) leaves and their immunostimulatory effects. Int J Biol Macromol 128:546–555. https://doi.org/10.1016/j.ijbiomac.2019.01.131

    Article  Google Scholar 

  15. Chen G, Zhu M, Guo M (2019) Research advances in traditional and modern use of Nelumbo nucifera: phytochemicals, health promoting activities and beyond. Crit Rev Food Sci Nutr 59:S189–S209. https://doi.org/10.1080/10408398.2018.1553846

    Article  Google Scholar 

  16. Trache D, Hussin MH, Hui Chuin CT et al (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application—a review. Int J Biol Macromol 93:789–804. https://doi.org/10.1016/j.ijbiomac.2016.09.056

    Article  Google Scholar 

  17. Mtibe A, Linganiso LZ, Mathew AP et al (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8. https://doi.org/10.1016/j.carbpol.2014.10.007

    Article  Google Scholar 

  18. Paes SS, Sun S, MacNaughtan W et al (2010) The glass transition and crystallization of ball milled cellulose. Cellulose 17:693–709. https://doi.org/10.1007/s10570-010-9425-7

    Article  Google Scholar 

  19. Muralidaran VM, Natrayan L, Kaliappan S, Patil PP (2023) Grape stalk cellulose toughened plain weaved bamboo fiber-reinforced epoxy composite: load bearing and time-dependent behavior. Biomass Convers Biorefin 1:1–8. https://doi.org/10.1007/S13399-022-03702-8/FIGURES/5

    Article  Google Scholar 

  20. Katakojwala R, Mohan SV (2020) Microcrystalline cellulose production from sugarcane bagasse: sustainable process development and life cycle assessment. J Clean Prod 249. https://doi.org/10.1016/j.jclepro.2019.119342

  21. Naduparambath S, **itha TV, Shaniba V, Sreejith MP, Balan AK (2018) Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydr Polym 180:13–20. https://doi.org/10.1016/j.carbpol.2017.09.088

    Article  Google Scholar 

  22. Madhu S, Devarajan Y, Natrayan L (2023) Effective utilization of waste sugarcane bagasse filler-reinforced glass fibre epoxy composites on its mechanical properties - waste to sustainable production. Biomass Convers Biorefin 1:1–8. https://doi.org/10.1007/S13399-023-03792-Y/FIGURES/9

    Article  Google Scholar 

  23. Ghalehno MD, Yousefi H (2023) Toward wheat straw valorization by its downsizing to five types of cellulose nanomaterials and nanopapers thereof. Waste Biomass Valoriz 1:1–12. https://doi.org/10.1007/S12649-023-02031-9/FIGURES/7

    Article  Google Scholar 

  24. Mishra SK, Dahiya S, Gangil B et al (2022) (2022) Mechanical, morphological, and tribological characterization of novel walnut shell-reinforced polylactic acid-based biocomposites and prediction based on artificial neural network. Biomass Conv Bioref 1:1–12. https://doi.org/10.1007/S13399-022-03670-Z

    Article  Google Scholar 

  25. Tarchoun AF, Trache D, Klapötke TM (2019) Microcrystalline cellulose from Posidonia oceanica brown algae: extraction and characterization. Int J Biol Macromol 138:837–845. https://doi.org/10.1016/j.ijbiomac.2019.07.176

    Article  Google Scholar 

  26. Merci A, Urbano A, Grossmann MVE et al (2015) Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion. Food Res Int 73:38–43. https://doi.org/10.1016/j.foodres.2015.03.020

    Article  Google Scholar 

  27. Ciolacu D, Popa V, Ciolacu F, Popa VI (2011) Amorphous cellulosestructure and characterization related papers amorphous cellulose-st ruct ure and valent in I Popa St udies concerning t he accessibilit y of different allomorphic forms of cellulose Diana Ciolacu Cellulose Ciolacu 2-fullt ext AMORPHOUS. Cellulose Chem Technol 45:13–21

    Google Scholar 

  28. Gapsari F, Andoko A, Diharjo K et al (2022) (2022) The effectiveness of isolation and characterization nanocelullose from Timoho fiber for sustainable materials. Biomass Conv Bioref 1:1–11. https://doi.org/10.1007/S13399-022-03672-X

    Article  Google Scholar 

  29. Nguyen PTT, Do NHN, Goh XY et al (2021) Recent progresses in eco-friendly fabrication and applications of sustainable aerogels from various waste materials. Waste and Biomass Valoriz 13:1825–1847. https://doi.org/10.1007/S12649-021-01627-3

    Article  Google Scholar 

  30. Zhang L, Tu ZC, Wang H, Kou Y, Wen QH, Fu ZF, Chang HX (2015) Response surface optimization and physicochemical properties of polysaccharides from Nelumbo nucifera leaves. Int J Biol Macromol 74:103–110. https://doi.org/10.1016/j.ijbiomac.2014.11.020

    Article  Google Scholar 

  31. Wang S, Peng X, Zhong L et al (2015) Choline chloride/urea as an effective plasticizer for production of cellulose films. Carbohydr Polym 117:133–139. https://doi.org/10.1016/j.carbpol.2014.08.113

    Article  Google Scholar 

  32. Munagapati VS, Wen HY, Wen JC et al (2022) Adsorption of Reactive Red 195 from aqueous medium using Lotus (Nelumbo nucifera) leaf powder chemically modified with dimethylamine: characterization, isotherms, kinetics, thermodynamics, and mechanism assessment. Int J Phytoremediation 24:131–144. https://doi.org/10.1080/15226514.2021.1929060

    Article  Google Scholar 

  33. Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567. https://doi.org/10.1163/156856108X295509

    Article  Google Scholar 

  34. Kumar R, Hynes NRJ, Senthamaraikannan P, Sanjay MR (2018) Physicochemical and thermal properties of Ceiba pentandra bark fiber physicochemical and thermal properties of Ceiba pentandra bark. J Nat Fibers 15:822–829. https://doi.org/10.1080/15440478.2017.1369208

    Article  Google Scholar 

  35. Arjmandi R, Hassan A, Mohamad Haafiz MK, Zakaria Z (2016) Biodegradability and thermal properties of hybrid montmorillonite/microcrystalline cellulose filled polylactic acid composites: effect of filler ratio. Polym Polym Comp 24:741–746. https://doi.org/10.1177/096739111602400910

    Article  Google Scholar 

  36. Fareez IM, Ibrahim NA, Wan Yaacob WMH et al (2018) Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching. Cellulose 25:4407–4421. https://doi.org/10.1007/s10570-018-1878-0

    Article  Google Scholar 

  37. Sunesh NP, Indran S, Divya D, Suchart S (2022) Isolation and characterization of novel agrowaste-based cellulosic micro fillers from Borassus flabellifer flower for polymer composite reinforcement. Polym Compos 43:6476–6488. https://doi.org/10.1002/PC.26960

    Article  Google Scholar 

  38. Kouadri I, Satha H (2018) Extraction and characterization of cellulose and cellulose nanofibers from Citrullus colocynthis seeds. Ind Crops Prod 124:787–796. https://doi.org/10.1016/j.indcrop.2018.08.051

    Article  Google Scholar 

  39. Gabriel T, Belete A, Syrowatka F et al (2020) Extraction and characterization of celluloses from various plant byproducts. Int J Biol Macromol 158:1248–1258. https://doi.org/10.1016/j.ijbiomac.2020.04.264

    Article  Google Scholar 

  40. Andrade Alves JA, Lisboa dos Santos MD, Morais CC et al (2019) Sorghum straw: Pul** and bleaching process optimization and synthesis of cellulose acetate. Int J Biol Macromol 135:877–886. https://doi.org/10.1016/j.ijbiomac.2019.05.014

    Article  Google Scholar 

  41. Harini K, Chandra Mohan C (2020) Isolation and characterization of micro and nanocrystalline cellulose fibers from the walnut shell, corncob and sugarcane bagasse. Int J Biol Macromol 163:1375–1383. https://doi.org/10.1016/j.ijbiomac.2020.07.239

    Article  Google Scholar 

  42. Phanthong P, Reubroycharoen P, Hao X, et al (2018) Nanocellulose: extraction and application. Carbon Resour Conv 1:32–43. https://doi.org/10.1016/j.crcon.2018.05.004

  43. Ibrahim I, Al-Obaidi Y, Hussin S (2015) Removal of methylene blue using cellulose nanocrystal synthesized from cotton by ultrasonic technique. Am Chem Sci J 9:1–7. https://doi.org/10.9734/acsj/2015/20031

    Article  Google Scholar 

  44. Collazo-Bigliardi S, Ortega-Toro R, Chiralt Boix A (2018) Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydr Polym 191:205–215. https://doi.org/10.1016/j.carbpol.2018.03.022

    Article  Google Scholar 

  45. Li M, He B, Zhao L (2019) Isolation and characterization of microcrystalline cellulose from Cotton Stalk Waste. Bioresources 14:3231–3246. https://doi.org/10.15376/biores.14.2.3231-3246

    Article  Google Scholar 

  46. Candlen K, Haque MA, Farfaras N et al (2022) Biodegradable mulch films produced from soy-filled polymer resins. Mater Today Commun 31:103331. https://doi.org/10.1016/j.mtcomm.2022.103331

    Article  Google Scholar 

  47. Khan MN, Rehman N, Sharif A et al (2020) Environmentally benign extraction of cellulose from dunchi fiber for nanocellulose fabrication. Int J Biol Macromol 153:72–78. https://doi.org/10.1016/j.ijbiomac.2020.02.333

    Article  Google Scholar 

  48. Sumesh KR, Kanthavel K, Kavimani V (2020) Peanut oil cake – derived cellulose fiber: extraction, application of mechanical and thermal properties in pineapple/flax natural fiber composites sumesh. Int J Biol Macromol 150:775–785. https://doi.org/10.1016/j.ijbiomac.2020.02.118

    Article  Google Scholar 

  49. Midhun Dominic CD, Raj V, Neenu KV et al (2022) Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum). Int J Biol Macromol 206:92–104. https://doi.org/10.1016/j.ijbiomac.2022.02.078

    Article  Google Scholar 

  50. Sheltami RM, Abdullah I, Ahmad I et al (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88:772–779. https://doi.org/10.1016/j.carbpol.2012.01.062

    Article  Google Scholar 

  51. Nagarajan KJ, Balaji AN, Kasi Rajan ST, Ramanujam NR (2020) Preparation of bio-eco based cellulose nanomaterials from used disposal paper cups through citric acid hydrolysis. Carbohydr Polym 235:115997. https://doi.org/10.1016/j.carbpol.2020.115997

    Article  Google Scholar 

  52. Reddy KO, Uma Maheswari C, Muzenda E et al (2016) Extraction and characterization of cellulose from pretreated ficus (Peepal Tree) leaf fibers. J Nat Fibers 13:54–64. https://doi.org/10.1080/15440478.2014.984055

    Article  Google Scholar 

  53. Reddy KO, Maheswari CU, Dhlamini MS et al (2018) Extraction and characterization of cellulose single fibers from native african napier grass. Carbohydr Polym 188:85–91. https://doi.org/10.1016/j.carbpol.2018.01.110

    Article  Google Scholar 

  54. Mohammed L, Ansari MNM, Pua G et al (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci 2015:1–15. https://doi.org/10.1155/2015/243947

    Article  Google Scholar 

  55. Thomas SK, Parameswaranpillai J, Krishnasamy S, et al (2021) A comprehensive review on cellulose, chitin, and starch as fillers in natural rubber biocomposites. Carbohydr Polym Technol Appl 2:100095. https://doi.org/10.1016/j.carpta.2021.100095

  56. Miléo PC, Oliveira MF, Luz SM et al (2016) Thermal and chemical characterization of sugarcane bagasse cellulose/lignin-reinforced composites. Polym Bull 73:3163–3174. https://doi.org/10.1007/s00289-016-1647-x

    Article  Google Scholar 

  57. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Eng 44:3358–3393. https://doi.org/10.1002/anie.200460587

    Article  Google Scholar 

  58. Xu L, Wang A, Li S et al (2022) Biomass residue cellulose-based poly(ionic liquid)s: new materials with selective metal ion adsorption. Biomass Convers Biorefin 12:3933–3942. https://doi.org/10.1007/s13399-020-00889-6

    Article  Google Scholar 

  59. Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173. https://doi.org/10.1016/j.watres.2016.01.008

    Article  Google Scholar 

  60. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohyd Polym 90:735–764. https://doi.org/10.1016/j.carbpol.2012.05.026

    Article  Google Scholar 

  61. Araújo DJC, Machado AV, Vilarinho MCLG (2019) Availability and suitability of agroindustrial residues as feedstock for cellulose-based materials: Brazil case study. Waste Biomass Valoriz 10:2863–2878. https://doi.org/10.1007/S12649-018-0291-0/FIGURES/6

    Article  Google Scholar 

  62. Yang J, An X, Liu L et al (2020) Cellulose, hemicellulose, lignin, and their derivatives as multi-components of bio-based feedstocks for 3D printing. Carbohydr Polym 250:116881. https://doi.org/10.1016/j.carbpol.2020.116881

    Article  Google Scholar 

  63. Kouadri I, Satha H (2018) Extraction and characterization of cellulose and cellulose nanofibers from Citrullus colocynthis seeds. Ind Crops Prod 124:787–796. https://doi.org/10.1016/j.indcrop.2018.08.051

    Article  Google Scholar 

  64. Kassab Z, Kassem I, Hannache H et al (2020) Tomato plant residue as new renewable source for cellulose production: extraction of cellulose nanocrystals with different surface functionalities. Cellulose 27:4287–4303. https://doi.org/10.1007/s10570-020-03097-7

    Article  Google Scholar 

  65. Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58:417–420. https://doi.org/10.1016/j.carbpol.2004.08.005

    Article  Google Scholar 

  66. Salimi E, Taheri ME, Passadis K et al (2021) Valorisation of restaurant food waste under the concept of a biorefinery. Biomass Convers Biorefin 11:661–671. https://doi.org/10.1007/S13399-020-00613-4/FIGURES/5

    Article  Google Scholar 

  67. Reshmy R, Philip E, Paul SA et al (2021) A green biorefinery platform for cost-effective nanocellulose production: investigation of hydrodynamic properties and biodegradability of thin films. Biomass Convers Biorefin 11:861–870. https://doi.org/10.1007/S13399-020-00961-1/FIGURES/8

    Article  Google Scholar 

  68. Chaffa TY, Meshesha BT, Mohammed SA, Jabasingh SA (2022) Production, characterization, and optimization of starch-based biodegradable bioplastic from waste potato (Solanum tuberosum) peel with the reinforcement of false banana (Ensete ventricosum) fiber. Biomass Convers Biorefin 1:1–13. https://doi.org/10.1007/S13399-022-03426-9/FIGURES/7

    Article  Google Scholar 

  69. Nakagaito AN, Kondo H, Takagi H (2013) Cellulose nanofiber aerogel production and applications. J Reinf Plast Compos 32:1547–1552. https://doi.org/10.1177/0731684413494110

    Article  Google Scholar 

  70. Nagaprasad N, Stalin B, Vignesh V et al (2019) Effect of cellulosic filler loading on mechanical and thermal properties of date palm seed/vinyl ester composites. Biol Macromol 147:53–66. https://doi.org/10.1016/j.ijbiomac.2019.11.247

    Article  Google Scholar 

  71. Bilo F, Pandini S, Sartore L et al (2018) A sustainable bioplastic obtained from rice straw. J Clean Prod 200:357–368. https://doi.org/10.1016/J.JCLEPRO.2018.07.252

    Article  Google Scholar 

  72. Ezz H, Ibrahim MG, Fujii M, Nasr M (2021) Dual biogas and biochar production from rice straw biomass: a techno-economic and sustainable development approach. Biomass Convers Biorefin 1:1–15. https://doi.org/10.1007/S13399-021-01879-Y/TABLES/6

    Article  Google Scholar 

  73. Cheng H, Chen L, McClements DJ et al (2021) Starch-based biodegradable packaging materials: a review of their preparation, characterization and diverse applications in the food industry. Trends Food Sci Technol 114:70–82. https://doi.org/10.1016/j.tifs.2021.05.017

    Article  Google Scholar 

  74. Thiruchitrambalam M, Athijayamani A, Sathiyamurthy S, Syed Abu Thaheer A (2010) A review on the natural fiber-reinforced polymer composites for the development of roselle fiber-reinforced polyester composite. J Nat Fibers 7:307–323

    Article  Google Scholar 

  75. Priyadarshana RWIB, Kaliyadasa PE, Ranawana SRWMCJK, Senarathna KGC (2020) Biowaste management: banana fiber utilization for product development. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1776665

  76. Qing Y, Sabo R, Zhu JY et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97:226–234. https://doi.org/10.1016/j.carbpol.2013.04.086

    Article  Google Scholar 

  77. Md Salim R, Asik J, Sarjadi MS (2021) Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci Technol 55:295–313. https://doi.org/10.1007/s00226-020-01258-2

    Article  Google Scholar 

  78. Berger C, Mattos BD, Amico SC et al (2020) Production of sustainable polymeric composites using grape pomace biomass. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-00966-w

  79. Kunam PK, Ramakanth D, Akhila K, Gaikwad KK (2022) Bio-based materials for barrier coatings on paper packaging. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-03241-2

  80. Abu-Thabit NY, Judeh AA, Hakeem AS et al (2020) Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.). Int J Biol Macromol 155:730–739. https://doi.org/10.1016/j.ijbiomac.2020.03.255

    Article  Google Scholar 

  81. Alshahrani H, Vr AP (2022) Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02691-y

  82. Elangovan M, Perumal A, Kavisri M, Moovendhan M (2022) Isolation, chemical characterization and in vitro bioactive potential of polysaccharides from seaweed Portieria hornemannii. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-03276-5

  83. Stalin N, Shobhanadevi N (2021) Studies on thermal, structural, and compositional properties of agro-waste jute fiber composite reinforced with cardanol resin. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01958-0

  84. Kukrety A, Singh RK, Singh P, Ray SS (2018) Comprehension on the synthesis of carboxymethylcellulose (CMC) utilizing various cellulose rich waste biomass resources. Waste Biomass Valoriz 9:1587–1595. https://doi.org/10.1007/S12649-017-9903-3/FIGURES/1

    Article  Google Scholar 

  85. de Souza RC, Ghavami K, Stroeven P (2010) Rice husk ash as a supplementary raw material for the production of cellulose-cement composites with improved performance. Waste Biomass Valoriz 1:241–249. https://doi.org/10.1007/S12649-010-9017-7/FIGURES/6

    Article  Google Scholar 

  86. Visakh PM, Thomas S (2010) Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valoriz 1:121–134. https://doi.org/10.1007/S12649-010-9009-7/FIGURES/16

    Article  Google Scholar 

  87. Kraemer E (1938) Molecular weights of celluloses determination of kinetic unit size in cellulosic solutions. Inductr Eng Chem 30:1200–1203

    Article  Google Scholar 

  88. Kumaran P, Mohanamurugan S, Madhu S et al (2020) Investigation on thermo-mechanical characteristics of treated/untreated Portunus sanguinolentus shell powder-based jute fabrics reinforced epoxy composites. J Industr Text 50:427–459. https://doi.org/10.1177/1528083719832851

    Article  Google Scholar 

Download references

Funding

This research was fully supported by King Mongkut’s University of Technology North Bangkok under grant no. KMUTNB-Post-66-08.

Author information

Authors and Affiliations

Authors

Contributions

All authors are equally contributed to Conceptualization, Methodology, Writing - original draft, Writing - review & editing.

Corresponding author

Correspondence to Indran Suyambulingam.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divakaran, D., Sriariyanun, M., Basha, S.A. et al. Physico-chemical, thermal, and morphological characterization of biomass-based novel microcrystalline cellulose from Nelumbo nucifera leaf: Biomass to biomaterial approach. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04349-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04349-9

Keywords

Navigation