Log in

Characterization of cellulosic plant fiber extracted from Waltheria indica Linn. stem

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Biomass-based fiber-reinforced polymer composites have emerged as a pioneering alternative for polymer matrix composites due to their low strength-to-weight ratio and as most synthetic fibers are non-biodegradable and hazardous. The paper aims to investigate the physiochemical, thermal stability, and surface properties of Waltheria indica Linnaeus stem fiber (WiLSF) to explore its suitability as a reinforcing agent in polymer composites as an alternative to synthetic fiber. In our study, the chemical analysis of WiLSF—determined using Fourier transform infrared spectroscopy—reveals a higher constituent of cellulose (60.54%) and the least wax content (0.42%), which gives WiLSF excellent bonding and structural properties. X-ray diffraction analysis confirmed the semi-crystalline nature of the fiber with a crystallinity index (46.59%) and crystalline size (0.50 nm). Moreover, the density of WiLSF is 1265 kg/m3, which is comparatively much less than most synthetic fiber. In addition, WiLSF has high thermal stability (245.9 °C) and activation energy (116.94 kJ/mol). The study confirms WiLSF is an ideal biomass-based alternative for synthetic fibers and could be widely used in the fiber industry in making biofiber-incorporated composites and various other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Yiga VA, Lubwama M, Pagel S et al (2021) Optimization of tensile strength of PLA/clay/rice husk composites using Box-Behnken design. Biomass Conversion Biorefinery. https://doi.org/10.1007/s13399-021-01971-3

    Article  Google Scholar 

  2. Berger C, Mattos BD, Amico SC et al (2020) Production of sustainable polymeric composites using grape pomace biomass. Biomass Conversion Biorefinery. https://doi.org/10.1007/s13399-020-00966-w

    Article  Google Scholar 

  3. Nurazzi NM, Asyraf MRM, Khalina A et al (2021) A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications. Polymers 13:1–42. https://doi.org/10.3390/polym13040646

    Article  Google Scholar 

  4. Arpitha GR, Verma A, Sanjay MR et al (2022) Bio-composite film from corn starch based vetiver cellulose. J Nat Fibers 19:14634–14644. https://doi.org/10.1080/15440478.2022.2068174

    Article  Google Scholar 

  5. Chaturvedi S, Verma A, Sethi SK et al (2022) Stalk fibers (rice, wheat, barley, etc.) composites and applications. Plant Fibers, their Composites, and Applications 347–362. https://doi.org/10.1016/B978-0-12-824528-6.00009-6

  6. Jain N, Verma A, Singh VK (2019) Dynamic mechanical analysis and creep-recovery behaviour of polyvinyl alcohol based cross-linked biocomposite reinforced with basalt fiber. Mater Res Exp 6. https://doi.org/10.1088/2053-1591/ab4332

  7. Zhang Y, Duan C, Bokka SK et al (2022) Molded fiber and pulp products as green and sustainable alternatives to plastics: a mini review. J Bioresour Bioprod 7:14–25. https://doi.org/10.1016/j.jobab.2021.10.003

    Article  Google Scholar 

  8. Rodríguez LJ, Cardona CA, Orrego CE (2016) Water uptake, chemical characterization, and tensile behavior of modified banana-plantain fiber and their polyester composites. Polym Compos 37:2960–2973. https://doi.org/10.1002/pc.23493

    Article  Google Scholar 

  9. Madhu P, Sanjay MR, Senthamaraikannan P et al (2019) A review on synthesis and characterization of commercially available natural fibers: Part-I. J Nat Fibers 16:1132–1144. https://doi.org/10.1080/15440478.2018.1453433

    Article  Google Scholar 

  10. Belachew T, Gebino G, Haile A (2021) Extraction and characterization of indigenous Ethiopian castor oil bast fiber. Cellulose 28:2075–2086. https://doi.org/10.1007/s10570-020-03667-9

    Article  Google Scholar 

  11. Ganesh S, Keerthiveettil Ramakrishnan S, Palani V et al (2022) Investigation on the mechanical properties of ramie/kenaf fibers under various parameters using GRA and TOPSIS methods. Polym Compos 43:130–143. https://doi.org/10.1002/pc.26362

    Article  Google Scholar 

  12. Han X, Ding L, Tian Z et al (2022) Potential new material for optical fiber: preparation and characterization of transparent fiber based on natural cellulosic fiber and epoxy. Int J Biol Macromol 224:1236–1243. https://doi.org/10.1016/j.ijbiomac.2022.10.209

    Article  Google Scholar 

  13. Maran M, Kumar R, Senthamaraikannan P et al (2020) Suitability evaluation of Sida mysorensis plant fiber as reinforcement in polymer composite. J Nat Fibers 00:1–11. https://doi.org/10.1080/15440478.2020.1787920

    Article  Google Scholar 

  14. Bousfield G, Morin S, Jacquet N, Richel A (2018) Extraction and refinement of agricultural plant fibers for composites manufacturing. C R Chim 21:897–906. https://doi.org/10.1016/j.crci.2018.07.001

    Article  Google Scholar 

  15. Nadlene R, Sapuan SM, Jawaid M et al (2018) The effects of chemical treatment on the structural and thermal, physical, and mechanical and morphological properties of roselle fiber-reinforced vinyl ester composites. Polym Compos 39:274–287. https://doi.org/10.1002/pc.23927

    Article  Google Scholar 

  16. Verma A, Singh C, Singh VK, Jain N (2019) Fabrication and characterization of chitosan-coated sisal fiber—Phytagel modified soy protein-based green composite. J Compos Mater 53:2481–2504. https://doi.org/10.1177/0021998319831748

    Article  Google Scholar 

  17. Moshi AAM, Ravindran D, Bharathi SRS et al (2020) Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. Int J Biol Macromol 142:212–221. https://doi.org/10.1016/j.ijbiomac.2019.09.094

    Article  Google Scholar 

  18. Raja S, Rajesh R, Indran S et al (2021) Characterization of industrial discarded novel Cymbopogon flexuosus stem fiber: A potential replacement for synthetic fiber. J Ind Text. https://doi.org/10.1177/15280837211007507

    Article  Google Scholar 

  19. Adamu BF (2021) Extraction of Ethiopian Kusha fiber from Ethiopian Kusha plant by different methods and characterization of its morphological and mechanical properties. Results Mater 12:100238. https://doi.org/10.1016/j.rinma.2021.100238

    Article  Google Scholar 

  20. Md JS, Madhu S, Chakravarthy KS, Siva Naga Raju J (2022) Characterization of natural cellulose fibers from the stem of Albizia julibrissin as reinforcement for polymer composites. Journal of Natural Fibers 19:2204–2217. https://doi.org/10.1080/15440478.2020.1807440

    Article  Google Scholar 

  21. Varshney S, Mishra N, Gupta MK (2021) Progress in nanocellulose and its polymer based composites: a review on processing, characterization, and applications. Polym Compos 42:3660–3686. https://doi.org/10.1002/pc.26090

    Article  Google Scholar 

  22. Gupta V, Ramakanth D, Verma C et al (2021) Isolation and characterization of cellulose nanocrystals from amla (Phyllanthus emblica) pomace. Biomass Conversion Biorefinery. https://doi.org/10.1007/s13399-021-01852-9

    Article  Google Scholar 

  23. Reddy BM, Reddy YVM, Reddy BCM et al (2021) A study on mechanical, structural, morphological, and thermal properties of raw and alkali treated Cordia dichotoma-polyester composite. Polym Compos 42:309–319. https://doi.org/10.1002/pc.25826

    Article  Google Scholar 

  24. Babu BG, Princewinston D, Saravanakumar SS et al (2022) Investigation on the physicochemical and mechanical properties of novel alkali-treated Phaseolus vulgaris fibers. J Nat Fibers 19:770–781. https://doi.org/10.1080/15440478.2020.1761930

    Article  Google Scholar 

  25. Pattanaik L, Naik SN, Hariprasad P (2019) Valorization of waste Indigofera tinctoria L. biomass generated from indigo dye extraction process—potential towards biofuels and compost. Biomass Conversion Biorefinery 9:445–457. https://doi.org/10.1007/s13399-018-0354-2

    Article  Google Scholar 

  26. A.N. B, K.J. N (2017) Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydr Polym 174:200–208. https://doi.org/10.1016/j.carbpol.2017.06.065

  27. Senthamaraikannan P, Saravanakumar SS (2022) Utilization of Mucuna atropurpurea stem fiber as a reinforcement in fiber reinforced plastics. Polymer Composites 1–20. https://doi.org/10.1002/pc.26763

  28. Raju JSN, Depoures MV, Kumaran P (2021) Comprehensive characterization of raw and alkali (NaOH) treated natural fibers from Symphirema involucratum stem. Int J Biol Macromol 186:886–896. https://doi.org/10.1016/j.ijbiomac.2021.07.061

    Article  Google Scholar 

  29. Ray R, Das SN, Mohapatra A, Das HC (2020) Comprehensive characterization of a novel natural Bauhinia Vahlii stem fiber. Polym Compos 41:3807–3816. https://doi.org/10.1002/pc.25678

    Article  Google Scholar 

  30. de Oliveira Júnior SD, Asevedo EA, de Araújo JS et al (2020) Enzymatic extract of Aspergillus fumigatus CCT 7873 for hydrolysis of sugarcane bagasse and generation of cellulose nanocrystals (CNC). Biomass Conversion Biorefinery. https://doi.org/10.1007/s13399-020-01020-5

    Article  Google Scholar 

  31. Chen B, Luo Z, Cai T et al (2018) The effect of corn varieties on the production of fiber-reinforced high-density polyethylene composites. Biomass Conversion Biorefinery 8:953–963. https://doi.org/10.1007/s13399-018-0337-3

    Article  Google Scholar 

  32. Indran S, Edwin Raj R, Sreenivasan VS (2014) Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohyd Polym 110:423–429. https://doi.org/10.1016/j.carbpol.2014.04.051

    Article  Google Scholar 

  33. Arun Prakash VR, Xavier JF, Ramesh G et al (2020) Mechanical, thermal and fatigue behaviour of surface-treated novel Caryota urens fiber–reinforced epoxy composite. Biomass Conversion Biorefinery. https://doi.org/10.1007/s13399-020-00938-0

    Article  Google Scholar 

  34. Sanjay MR, Siengchin S, Parameswaranpillai J et al (2019) A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohyd Polym 207:108–121. https://doi.org/10.1016/j.carbpol.2018.11.083

    Article  Google Scholar 

  35. Almafie MR, Nawawi Z, Jauhari J, Sriyanti I (2020) Electrospun of Poly (vinyl alcohol)/Potassium hydroxide (PVA/KOH) nanofiber composites using the electrospinning method. IOP Conf Ser: Mater Sci Eng 850. https://doi.org/10.1088/1757-899X/850/1/012051

  36. Nyong AE, Pradeep JJA (2017) The effect of process induced variation of nanostructure sizes on the superhydrophobicity of modified C84400 alloy surfaces. J Mater Sci Surface Eng 5:707–712

    Google Scholar 

  37. Yuli Y, Eka S, Rakiman, Yazmendra R (2021) Biomass waste of cocoa skin for basic activated carbon as source of eco-friendly energy storage. Journal of Physics: Conference Series 1788:. https://doi.org/10.1088/1742-6596/1788/1/012020

  38. Peng Q, Ormondroyd G, Spear M, Chang W-S (2022) The effect of the change in chemical composition on the mechanical properties of Pinus Densiflora. SSRN Electron J 1:1–28. https://doi.org/10.2139/ssrn.4067944

    Article  Google Scholar 

  39. Meng W, Shi J, Zhang X et al (2020) Effects of peanut shell and skin extracts on the antioxidant ability, physical and structure properties of starch-chitosan active packaging films. Int J Biol Macromol 152:137–146. https://doi.org/10.1016/j.ijbiomac.2020.02.235

    Article  Google Scholar 

  40. Oyeoka HC, Ewulonu CM, Nwuzor IC et al (2021) Packaging and degradability properties of polyvinyl alcohol/gelatin nanocomposite films filled water hyacinth cellulose nanocrystals. J Bioresour Bioprod 6:168–185. https://doi.org/10.1016/J.JOBAB.2021.02.009

    Article  Google Scholar 

  41. Memè L, Notarstefano V, Sampalmieri F et al (2021) Atr-ftir analysis of orthodontic invisalign® aligners subjected to various in vitro aging treatments. Materials 14:1–10. https://doi.org/10.3390/ma14040818

    Article  Google Scholar 

  42. Madhu P, Sanjay MR, Pradeep S et al (2019) Characterization of cellulosic fiber from Phoenix pusilla leaves as potential reinforcement for polymeric composites. J Market Res 8:2597–2604. https://doi.org/10.1016/j.jmrt.2019.03.006

    Article  Google Scholar 

  43. Chen G, Dong J, Wan J et al (2021) Fiber characterization of old corrugated container bleached pulp with laccase and glycine pretreatment. Biomass Conversion Biorefinery. https://doi.org/10.1007/s13399-020-01200-3

    Article  Google Scholar 

  44. Abdal-Hay A, Suardana NPG, Jung DY et al (2012) Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. Int J Precis Eng Manuf 13:1199–1206. https://doi.org/10.1007/s12541-012-0159-3

    Article  Google Scholar 

  45. Jayaramudu J, Guduri BR, VaradaRajulu A (2010) Characterization of new natural cellulosic fabric Grewia tilifolia. Carbohyd Polym 79:847–851. https://doi.org/10.1016/j.carbpol.2009.10.046

    Article  Google Scholar 

  46. Sathishkumar TP, Navaneethakrishnan P, Shankar S, Rajasekar R (2013) Characterization of new cellulose sansevieria ehrenbergii fibers for polymer composites. Compos Interfaces 20:575–593. https://doi.org/10.1080/15685543.2013.816652

    Article  Google Scholar 

  47. Sarikanat M, Seki Y, Sever K, Durmuşkahya C (2014) Determination of properties of Althaea officinalis L. (Marshmallow) fibers as a potential plant fiber in polymeric composite materials. Compos B Eng 57:180–186. https://doi.org/10.1016/j.compositesb.2013.09.041

    Article  Google Scholar 

  48. Loganathan TM, Sultan MTH, Ahsan Q et al (2020) Characterization of alkali treated new cellulosic fiber from Cyrtostachys renda. J Market Res 9:3537–3546. https://doi.org/10.1016/j.jmrt.2020.01.091

    Article  Google Scholar 

  49. Fonseca-Prieto FV, Canché-Escamilla G, Chavarria-Hernandez JC, Duarte-Aranda S (2014) Characterization of lignocellulosic residues of henequen and their use as a bio-oil source. Biomass Conversion Biorefinery 4:95–104. https://doi.org/10.1007/s13399-013-0099-x

    Article  Google Scholar 

  50. Manimaran P, Senthamaraikannan P, Sanjay MR et al (2018) Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohyd Polym 181:650–658. https://doi.org/10.1016/j.carbpol.2017.11.099

    Article  Google Scholar 

  51. Alharbi MAH, Hirai S, Kuzuya T et al (2021) Effect of coconut coir and regenerated silk microparticles as blends and natural binders for construction and demolition waste (CDW) wood on the mechanical, thermal, and structural properties of biomicrocomposites prepared by hot-pressing. Biomass Conversion Biorefinery. https://doi.org/10.1007/s13399-021-01398-w

    Article  Google Scholar 

  52. Mantovan J, Giraldo GAG, Marim BM et al (2021) Cellulose-based materials from orange bagasse employing environmentally friendly approaches. Biomass Conversion Biorefinery. https://doi.org/10.1007/s13399-021-01279-2

    Article  Google Scholar 

  53. Ornaghi HL, Monticeli FM, Neves RM et al (2021) Influence of different cellulose/hemicellulose/lignin ratios on the thermal degradation behavior: prediction and optimization. Biomass Conversion Biorefinery. https://doi.org/10.1007/s13399-021-01651-2

    Article  Google Scholar 

  54. Kumar R, Sivaganesan S, Senthamaraikannan P et al (2022) Characterization of new cellulosic fiber from the bark of Acacia nilotica L. Plant J Nat Fibers 19:199–208. https://doi.org/10.1080/15440478.2020.1738305

    Article  Google Scholar 

  55. Rajeshkumar G, Devnani GL, Maran JP et al (2021) Characterization of novel natural cellulosic fibers from purple bauhinia for potential reinforcement in polymer composites. Cellulose 28:5373–5385. https://doi.org/10.1007/s10570-021-03919-2

    Article  Google Scholar 

  56. Mansingh BB, Binoj JS, Anbazhagan VN et al (2022) Characterization of Cocos nucifera L. peduncle fiber reinforced polymer composites for lightweight sustainable applications. J Appl Polym Sci 139:1–13. https://doi.org/10.1002/app.52245

    Article  Google Scholar 

  57. Saravanakumar SS, Kumaravel A, Nagarajan T et al (2013) Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohyd Polym 92:1928–1933. https://doi.org/10.1016/j.carbpol.2012.11.064

    Article  Google Scholar 

  58. Dawit JB, Regassa Y, Lemu HG (2020) Property characterization of acacia tortilis for natural fiber reinforced polymer composite. Results Mater 5:100054. https://doi.org/10.1016/j.rinma.2019.100054

    Article  Google Scholar 

  59. Kathiresan M, Pandiarajan P, Senthamaraikannan P, Saravanakumar SS (2016) Physicochemical properties of new cellulosic Artisdita hystrix leaf fiber. Int J Polym Anal Charact 21:663–668. https://doi.org/10.1080/1023666X.2016.1194636

    Article  Google Scholar 

  60. Seki Y, Sarikanat M, Sever K, Durmuşkahya C (2013) Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Compos B Eng 44:517–523. https://doi.org/10.1016/j.compositesb.2012.03.013

    Article  Google Scholar 

  61. Sakji N, Jabli M, Khoffi F et al (2016) Physico-chemical characteristics of a seed fiber arised from Pergularia Tomentosa L. Fibers and Polymers 17:2095–2104. https://doi.org/10.1007/s12221-016-6461-4

    Article  Google Scholar 

  62. Kathirselvam M, Kumaravel A, Arthanarieswaran VP, Saravanakumar SS (2019) Characterization of cellulose fibers in Thespesia populnea barks: influence of alkali treatment. Carbohyd Polym 217:178–189. https://doi.org/10.1016/j.carbpol.2019.04.063

    Article  Google Scholar 

  63. Manimaran P, Prithiviraj M, Saravanakumar SS et al (2018) Physicochemical, tensile, and thermal characterization of new natural cellulosic fibers from the stems of Sida cordifolia. J Nat Fibers 15:860–869. https://doi.org/10.1080/15440478.2017.1376301

    Article  Google Scholar 

  64. Gopinath R, Ganesan K, Saravanakumar SS, Poopathi R (2016) Characterization of new cellulosic fiber from the stem of Sida rhombifolia. Int J Polym Anal Charact 21:123–129. https://doi.org/10.1080/1023666X.2016.1117712

    Article  Google Scholar 

  65. Shanmugasundaram N, Rajendran I, Ramkumar T (2018) Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohyd Polym 195:566–575. https://doi.org/10.1016/j.carbpol.2018.04.127

    Article  Google Scholar 

  66. Kaushik VK, Kumar A, Kalia S (2013) Effect of mercerization and benzoyl peroxide treatment on morphology, thermal stability and crystallinity of sisal fibers. Int J Text Sci 1:101–105. https://doi.org/10.5923/j.textile.20120106.07

    Article  Google Scholar 

  67. Ding L, Han X, Cao L et al (2022) Characterization of natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites. J Bioresour Bioprod 7:190–200. https://doi.org/10.1016/j.jobab.2021.11.002

    Article  Google Scholar 

  68. Jebadurai SG, Raj RE, Sreenivasan VS, Binoj JS (2019) Comprehensive characterization of natural cellulosic fiber from Coccinia grandis stem. Elsevier Ltd.

  69. Arthanarieswaran VP, Kumaravel A, Saravanakumar SS (2015) Characterization of new natural cellulosic fiber from Acacia leucophloea bark. Int J Polym Anal Charact 20:367–376. https://doi.org/10.1080/1023666X.2015.1018737

    Article  Google Scholar 

  70. Baskaran PG, Kathiresan M, Senthamaraikannan P, Saravanakumar SS (2018) Characterization of new natural cellulosic fiber from the bark of Dichrostachys Cinerea. J Nat Fibers 15:62–68. https://doi.org/10.1080/15440478.2017.1304314

    Article  Google Scholar 

  71. Kumar R, Hynes NRJ, Senthamaraikannan P et al (2018) Physicochemical and thermal properties of Ceiba pentandra bark fiber. J Nat Fibers 15:822–829. https://doi.org/10.1080/15440478.2017.1369208

    Article  Google Scholar 

  72. Mayandi K, Ra**i N, Pitchipoo P et al (2016) Extraction and characterization of new natural lignocellulosic fiber Cyperus pangorei. Int J Polym Anal Charact 21:175–183. https://doi.org/10.1080/1023666X.2016.1132064

    Article  Google Scholar 

  73. Balasundar P, Narayanasamy P, Senthamaraikannan P et al (2018) Extraction and characterization of new natural cellulosic Chloris barbata fiber. J Nat Fibers 15:436–444. https://doi.org/10.1080/15440478.2017.1349015

    Article  Google Scholar 

  74. Prithiviraj M, Muralikannan R, Senthamaraikannan P, Saravanakumar SS (2016) Characterization of new natural cellulosic fiber from the Perotis indica plant. Int J Polym Anal Charact 21:669–674. https://doi.org/10.1080/1023666X.2016.1202466

    Article  Google Scholar 

  75. Ridzuan MJM, Abdul Majid MS, Afendi M et al (2016) Characterisation of natural cellulosic fiber from Pennisetum purpureum stem as potential reinforcement of polymer composites. Mater Des 89:839–847. https://doi.org/10.1016/j.matdes.2015.10.052

    Article  Google Scholar 

  76. Manimaran P, Saravanan SP, Sanjay MR et al (2019) Characterization of new cellulosic fiber: Dracaena reflexa as a reinforcement for polymer composite structures. J Market Res 8:1952–1963. https://doi.org/10.1016/j.jmrt.2018.12.015

    Article  Google Scholar 

  77. Sundaram RS, Rajamoni R, Suyambulingam I, Isaac R (2021) Comprehensive characterization of industrially discarded cymbopogon flexuosus stem fiber reinforced unsaturated polyester composites: effect of fiber length and weight fraction. J Nat Fibers 00:1–16. https://doi.org/10.1080/15440478.2021.1944435

    Article  Google Scholar 

  78. Indran S, Raj RE (2015) Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohyd Polym 117:392–399. https://doi.org/10.1016/j.carbpol.2014.09.072

    Article  Google Scholar 

  79. Ikramullah, Rizal S, Thalib S, Huzni S (2018) Hemicellulose and lignin removal on typha fiber by alkali treatment. IOP Conf Ser: Mater Sci Eng 352. https://doi.org/10.1088/1757-899X/352/1/012019

  80. Jaiswal D, Devnani GL, Rajeshkumar G et al (2022) Review on extraction, characterization, surface treatment and thermal degradation analysis of new cellulosic fibers as sustainable reinforcement in polymer composites. Curr Res Green Sustain Chem 5:100271. https://doi.org/10.1016/j.crgsc.2022.100271

    Article  Google Scholar 

  81. Gil-Chávez J, Gurikov P, Hu X et al (2021) Application of novel and technical lignins in food and pharmaceutical industries: structure-function relationship and current challenges. Biomass Conversion Biorefinery 11:2387–2403. https://doi.org/10.1007/s13399-019-00458-6

    Article  Google Scholar 

  82. Fiore V, Scalici T, Valenza A (2014) Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohyd Polym 106:77–83. https://doi.org/10.1016/j.carbpol.2014.02.016

    Article  Google Scholar 

  83. Sharma S, Pradhan R, Manickavasagan A, Dutta A (2022) Characterization of ultrasonic-treated corn crop biomass using imaging, spectral and thermal techniques: a review. Biomass Conversion Biorefinery 12:1393–1408. https://doi.org/10.1007/s13399-020-00748-4

    Article  Google Scholar 

  84. Wang Z, Hassan MU, Nadeem F et al (2020) Magnesium fertilization improves crop yield in most production systems: a meta-analysis. Front Plant Sci 10:1–10. https://doi.org/10.3389/fpls.2019.01727

    Article  Google Scholar 

Download references

Acknowledgements

First author acknowledges the Coimbatore Institute of Technology, Coimbatore -Tamil Nadu, India, Shiv Kumar—copyeditor, and RadoChemMAX, Nagercoil for providing research lab facilities to carry out this research work.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

G. Suganya Priyadharshini—conceptualization, investigation, methodology, writing original draft, visualization and data curation. T. Velmurugan—conceptualization, investigation, methodology, visualization and data curation. S. Indran—formal analysis, validation, writing—review and editing, project administration, supervision. M.R. Sanjay—formal analysis, validation, writing—review and editing, project administration, supervision. Suchart Siengchin—resources, complete analysis of the work with technical correction. R. Vishnu—visualization and supported for data interpretation.

Corresponding author

Correspondence to G. Suganya Priyadharshini.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadharshini, G.S., Velmurugan, T., Suyambulingam, I. et al. Characterization of cellulosic plant fiber extracted from Waltheria indica Linn. stem. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04270-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04270-1

Keywords

Navigation