Log in

Bioreduction of gold nanocolloids using Quercus infectoria (Oliv): UV-assisted cationic-anionic dye degradation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Water pollution is one of the biggest environmental problems that directly affect human beings. According to natural resources defense council (NRDC), it causes 1.8 million deaths in 2015 and each year, 1 billion people suffer from unsafe water. Dyes which are expelled by textile industry directly into water supply prevent light entering the ecosystem. Light absorption diminishes photosynthetic activity of algae and influences the food chain. The dyes being a potential carcinogen increase the risk of cancer. This study focuses on degradation of dyes using gold nanocolloids. Gold nanocolloids are synthesized in this experiment using green, bioreduction method. The precursor HAuCl4 is prepared by dissolving gold and aqua regia. The precursor is reduced using Quercus infectoria (Oliv) gall extract which is rich in tannins. The optical, vibrational, structural, and morphological characterization is done for the colloidal gold. The obtained gold colloid is hence used to reduce methylene blue (MB) and methyl red (MR) dyes which could be used for studying degradation of dyes with large scale impact. In our work, we accomplished about 94% degradation of methylene blue (MB) into leucomethylene blue and 92% degradation of methyl red (MR) into reduced methyl red under 30 min. These results show that the gold nanocolloids exhibit good photocatalytic degradation comparing with previous literatures and the mechanism is elucidated and explained in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Wei G, Han W, Shu X et al (2021) Heavy-ion irradiation effects on uranium-contaminated soil for nuclear waste. J Hazard Mater 405:124273. https://doi.org/10.1016/J.JHAZMAT.2020.124273

    Article  Google Scholar 

  2. Wang C, Zhao J, **ng B (2021) Environmental source, fate, and toxicity of microplastics. J Hazard Mater 407:124357. https://doi.org/10.1016/J.JHAZMAT.2020.124357

    Article  Google Scholar 

  3. Logambal S, Thilagavathi T, Chandrasekar M, Inmozhi C, Philippe Belle EK, Bassyouni FA, Uthrakumar R, Muthukumaran A, Suresh N, Kaviyarasu K (2023) Synthesis and antimicrobial activity of silver nanoparticles: incorporated couroupita guianensis flower petal extract for biomedical applications. J. King Saud Univ. Sci. 35:102455. https://doi.org/10.1016/j.jksus.2022.102455

    Article  Google Scholar 

  4. Nagasundari SM, Muthu K, Kaviyarasu K, Farraj AI, Alkufeidy RM (2021) Current trends of Silver doped Zinc oxide nanowires photocatalytic degradation for energy and environmental application. Surf. Interfaces 23:100931. https://doi.org/10.1016/j.surfin.2021.100931

    Article  Google Scholar 

  5. Schubert U, Hüsing N, Laine R (2008) Materials syntheses: a practical guide. Springer Science & Business Media, pp 1–228. https://doi.org/10.1007/978-3-211-75125-1

    Book  Google Scholar 

  6. Moghadam NCZ, Jasim SA, Ameen F et al (2022) Nickel oxide nanoparticles synthesis using plant extract and evaluation of their antibacterial effects on Streptococcus mutans. Bioprocess Biosyst Eng 45:1201–1210. https://doi.org/10.1007/S00449-022-02736-6

    Article  Google Scholar 

  7. Almansob A, Bahkali AH, Albarrag A et al (2022) Effective treatment of resistant opportunistic fungi associated with immuno-compromised individuals using silver biosynthesized nanoparticles. Appl. Nanosci. 1:1–12. https://doi.org/10.1007/S13204-022-02539-X

    Article  Google Scholar 

  8. Ameen F, Al-Maary KS, Almansob A et al (2022) Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. Ap. Nan. 76:35–46. https://doi.org/10.1007/S13204-021-02047-4

    Article  Google Scholar 

  9. Ameen F (2022) Optimization of the synthesis of fungus-mediated bi-metallic Ag-Cu nanoparticles. Appl. Sci. 12:1384. https://doi.org/10.3390/APP12031384

    Article  Google Scholar 

  10. Sonbol H, Ameen F, AlYahya S et al (2021) Padina boryana mediated green synthesis of crystalline palladium nanoparticles as potential nanodrug against multidrug resistant bacteria and cancer cells. Sci. Rep. 11:1–19. https://doi.org/10.1038/s41598-021-84794-6

    Article  Google Scholar 

  11. Isacfranklin M, Dawoud T, Ameen F et al (2020) Synthesis of highly active biocompatible ZrO2 nanorods using a bioextract. Ceram Int 46:25915–25920. https://doi.org/10.1016/J.CERAMINT.2020.07.076

    Article  Google Scholar 

  12. Sivaji S, Gunasekaran S, Arumugam DG, Ranganathan B, Khalid SA, Tse-Wei C, Kaviyarasu K (2021) Biosynthesis, characterization, and antibacterial activity of gold nanoparticles. J. Infect. Public Health 14(12):1842–1847. https://doi.org/10.1016/j.jiph.2021.10.007

    Article  Google Scholar 

  13. Yadav TC, Gupta P, Saini S et al (2022) Plausible mechanistic insights in biofilm eradication potential against Candida spp. using in situ-synthesized tyrosol-functionalized chitosan gold nanoparticles as a versatile antifouling coating on implant surfaces. ACS Omega 7:8350–8363. https://doi.org/10.1021/ACSOMEGA.1C05822

    Article  Google Scholar 

  14. Jayakumar C, Maria Magdalane C, Kaviyarasu K, Anbu Kulandainathan M, Boniface J, Maaza M (2018) Direct electrodeposition of gold nanoparticles on glassy carbon electrode for selective determination catechol in the presence of hydroquinone. J. Nanosci. Nanotechnol 18(7):4544–4550. https://doi.org/10.1166/jnn.2018.15307

    Article  Google Scholar 

  15. Rani M, Yadav J, Shanker U (2022) Green synthesized zinc-based nanocomposites for environmental remediation. ACS Symposium Series 1411:141–163. https://doi.org/10.1021/BK-2022-1411.CH006

    Article  Google Scholar 

  16. Nur A, Kamarudin N, Nur HN et al (2021) Gallotannin-enriched fraction from Quercus infectoria galls as an antioxidant and inhibitory agent against human glioblastoma multiforme. Plants 10:2581. https://doi.org/10.3390/PLANTS10122581

    Article  Google Scholar 

  17. Burlacu E, Nisca A, Tanase C (2020) A comprehensive review of phytochemistry and biological activities of Quercus species. Forests 11:904. https://doi.org/10.3390/F11090904

    Article  Google Scholar 

  18. Morales D (2021) Oak trees (Quercus spp.) as a source of extracts with biological activities: a narrative review. Trends Food Sci Technol 109:116–125. https://doi.org/10.1016/J.TIFS.2021.01.029

    Article  Google Scholar 

  19. Askari F, Azadi A, Namavar-Jahromi B et al (2020) A comprehensive review about Quercus infectoria G. Olivier gall. Res. J. Pharmacogn 7:69–77. https://doi.org/10.22127/RJP.2019.184177.1494

    Article  Google Scholar 

  20. Kumar M, Prakash S, Kumari N, et al (2021) Beneficial role of antioxidant secondary metabolites from medicinal plants in maintaining oral health. Antioxidants 10, 1061. https://doi.org/10.3390/antiox10071061

  21. Qadir A, Jahan S, Aqil M et al (2021) Phytochemical-based nano-pharmacotherapeutics for management of burn wound healing. Gels 7:209. https://doi.org/10.3390/GELS7040209

    Article  Google Scholar 

  22. Chatterjee M, Mukherjee A (2021) Evaluation of bioactivity of green nanoparticles synthesized from traditionally used medicinal plants: a review. Evidence Based Validation of Traditional Medicines 47:799–815. https://doi.org/10.1007/978-981-15-8127-4_38

    Article  Google Scholar 

  23. Xu M, Li N (2020) Metal-based nanocontainers for drug delivery in tumor therapy. Smart Nanocontainers: Micro and Nano Technologies 89:195–215. https://doi.org/10.1016/B978-0-12-816770-0.00012-5

    Article  Google Scholar 

  24. Vandarkuzhali SAA, Karthikeyan G, Pachamuthu MP (2021) Microwave assisted biosynthesis of Borassus flabellifer fruit mediated silver and gold nanoparticles for dye reduction, antibacterial and anticancer activity. J Environ Chem Eng 9:106411. https://doi.org/10.1016/J.JECE.2021.106411

    Article  Google Scholar 

  25. Freestone I, Meeks N, Sax M, Higgitt C (2007) The Lycurgus cup — a Roman nanotechnology. Gold Bulletin 40:270–277. https://doi.org/10.1007/BF03215599

    Article  Google Scholar 

  26. Xuan S, Wang YXJ, Yu JC, Leung KCF (2009) Preparation, characterization, and catalytic activity of core/shell Fe 3O4@polyaniline@Au nanocomposites. Langmuir 25:11835–11843. https://doi.org/10.1021/LA901462T

    Article  Google Scholar 

  27. Mythili R, Selvankumar T, Srinivasan P et al (2018) Biogenic synthesis, characterization and antibacterial activity of gold nanoparticles synthesised from vegetable waste. J Mol Liq 262:318–321. https://doi.org/10.1016/J.MOLLIQ.2018.04.087

    Article  Google Scholar 

  28. Kim DY, Saratale RG, Shinde S et al (2018) Green synthesis of silver nanoparticles using Laminaria japonica extract: characterization and seedling growth assessment. J Clean Prod 172:2910–2918. https://doi.org/10.1016/J.JCLEPRO.2017.11.123

    Article  Google Scholar 

  29. Nur Syukriah AR, Liza MS, Harisun Y, Fadzillah AAM (2014) Effect of solvent extraction on antioxidant and antibacterial activities from Quercus infectoria (Manjakani). Int. Food Res. J. 21:1031–1037

    Google Scholar 

  30. Muthuraman G, Teng TT (2009) Extraction of methyl red from industrial wastewater using xylene as an extractant. Prog. Nat. Sci. 19:1215–1220. https://doi.org/10.1016/J.PNSC.2009.04.002

    Article  Google Scholar 

  31. National Toxicology Program (2012) Toxicology and carcinogenesis studies of N,N-dimethyl-p-toluidine (CAS No. 99-97-8) in F344/N rats and B6C3F1/N mice (gavage studies). Natl Toxicol Program Tech Rep Ser 579:1–211

    Google Scholar 

  32. Selvam K, Albasher G, Alamri O et al (2022) Enhanced photocatalytic activity of novel Canthium coromandelicum leaves based copper oxide nanoparticles for the degradation of textile dyes. Environ Res 211:113046. https://doi.org/10.1016/J.ENVRES.2022.113046

    Article  Google Scholar 

  33. Nasri A, Jaleh B, Nezafat Z et al (2021) Fabrication of g-C3N4/Au nanocomposite using laser ablation and its application as an effective catalyst in the reduction of organic pollutants in water. Ceram Int 47:3565–3572. https://doi.org/10.1016/J.CERAMINT.2020.09.204

    Article  Google Scholar 

  34. Mohazzab BF, Jaleh B, Nasrollahzadeh M et al (2019) Laser ablation-assisted synthesis of GO/TiO2/Au nanocomposite: applications in K3[Fe(CN)6] and Nigrosin reduction. Molecular Catalysis 473:110401. https://doi.org/10.1016/J.MCAT.2019.110401

    Article  Google Scholar 

  35. Musadiq Anis S, Habibullah Hashemi S, Nasri A et al (2022) Decorated ZrO2 by Au nanoparticles as a potential nanocatalyst for the reduction of organic dyes in water. Inorg Chem Commun 141:109489. https://doi.org/10.1016/J.INOCHE.2022.109489

    Article  Google Scholar 

  36. Nezafat Z, Feizi Mohazzab B, Jaleh B et al (2021) A promising nanocatalyst: upgraded kraft lignin by titania and palladium nanoparticles for organic dyes reduction. Inorg Chem Commun 130:108746. https://doi.org/10.1016/J.INOCHE.2021.108746

    Article  Google Scholar 

  37. Mohazzab BF, Jaleh B, Nasrollahzadeh M et al (2020) Upgraded valorization of biowaste: laser-assisted synthesis of Pd/calcium lignosulfonate nanocomposite for hydrogen storage and environmental remediation. ACS Omega 5:5888–5899. https://doi.org/10.1021/ACSOMEGA.9B04149

    Article  Google Scholar 

  38. Megarajan S, Ameen F, Singaravelu D et al (2022) Synthesis of N-myristoyltaurine stabilized gold and silver nanoparticles: assessment of their catalytic activity, antimicrobial effectiveness and toxicity in zebrafish. Environ Res 212:113159. https://doi.org/10.1016/J.ENVRES.2022.113159

    Article  Google Scholar 

  39. Rauf A, Ahmad T, Khan A et al (2021) Green synthesis and biomedicinal applications of silver and gold nanoparticles functionalized with methanolic extract of Mentha longifolia. Artif Cells Nanomed Biotechnol 49:194–203. https://doi.org/10.1080/21691401.2021.1890099

    Article  Google Scholar 

  40. Ullah R, Hameed A, Azam A et al (2022) Facile synthesis of silver and gold nanoparticles using chicken feather extract as template and their biological applications. Biomass Convers. Biorefin. 20:1–9. https://doi.org/10.1007/S13399-022-03447-4

    Article  Google Scholar 

  41. Soliman MKY, Abu-Elghait M, Salem SS·, et al (2022) Multifunctional properties of silver and gold nanoparticles synthesis by Fusarium pseudonygamai. Biomass Convers. Biorefin., 1, 1-18. https://doi.org/10.1007/S13399-022-03507-9

    Article  Google Scholar 

  42. Namasivayam SKR, Srinivasan S, Kavisri M et al (2022) Methylene blue biosorption and antibacterial active gold nanoparticle synthesis using microwave-treated structurally modified water hyacinth biomass. Biomass Convers. Biorefin. 22:1–22. https://doi.org/10.1007/S13399-022-03216-3

    Article  Google Scholar 

  43. Raj DVK, Devi MR, Venkatesh B et al (2022) Sustainable removal of methylene blue dye from textile effluent by using cellulose nanocrystals extracted from sugarcane bagasse. Biomass Convers. Biorefin. 20:1–9. https://doi.org/10.1007/S13399-022-03284-5

    Article  Google Scholar 

  44. Verma N, Kumar V, Kesari KK (2022) Microbial and lignocellulosic biomass based dye decolourization. Biomass Convers. Biorefin. 89:1–24. https://doi.org/10.1007/S13399-022-02537-7

    Article  Google Scholar 

  45. Jagirani MS, Mahesar SA, Uddin S et al (2021) Functionalized gold nanoparticles based optical, surface plasmon resonance-based sensor for the direct determination of mitoxantrone anti-cancer agent from real samples. J. Clust. Sci. 33:41–247. https://doi.org/10.1007/S10876-020-01948-8

    Article  Google Scholar 

  46. **n Lee K, Shameli K, Miyake M et al (2016) Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels. J Nanomater 25:67–77. https://doi.org/10.1155/2016/8489094

    Article  Google Scholar 

  47. Shang Y, Min C, Hu J et al (2013) Synthesis of gold nanoparticles by reduction of HAuCl4 under UV irradiation. Solid State Sci 15:17–23. https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2012.09.002

    Article  Google Scholar 

  48. Khatamifar M, Fatemi SJ, Torkzadeh-Mahani M et al (2021) Green and eco-friendly synthesis of silver nanoparticles by Quercus infectoria galls extract: thermal behavior, antibacterial, antioxidant and anticancer properties. Part. Sci. Technol. 40:281–289. https://doi.org/10.1080/02726351.2021.1941455

    Article  Google Scholar 

  49. Song S, Song H, Li L et al (2022) Publisher correction: a selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nature Catalysis 5:78–89. https://doi.org/10.1038/s41929-021-00733-8

    Article  Google Scholar 

  50. Mahanta U, Khandelwal M, Deshpande AS (2022) TiO2@SiO2 nanoparticles for methylene blue removal and photocatalytic degradation under natural sunlight and low-power UV light. Appl Surf Sci 576:151745. https://doi.org/10.1016/J.APSUSC.2021.151745

    Article  Google Scholar 

  51. **ga LI, Popescu-Pelin G, Socol G et al (2021) Chemical degradation of methylene blue dye using TiO2/Au nanoparticles. Nanomaterials 11:1605. https://doi.org/10.3390/NANO11061605

    Article  Google Scholar 

  52. León ER, Rodríguez EL, Beas CR et al (2016) Study of methylene blue degradation by gold nanoparticles synthesized within natural zeolites. J Nanomater 39:55–69. https://doi.org/10.1155/2016/9541683

    Article  Google Scholar 

  53. Kazancioglu EO, Aydin M, Arsu N (2021) Photochemical synthesis of nanocomposite thin films containing silver and gold nanoparticles with 2-thioxanthone thioacetic acid-dioxide and their role in photocatalytic degradation of methylene blue. Surf. Interfaces 22:100793. https://doi.org/10.1016/J.SURFIN.2020.100793

    Article  Google Scholar 

  54. Ozcelik Kazancioglu E, Aydin M, Arsu N (2021) Photochemical synthesis of bimetallic gold/silver nanoparticles in polymer matrix with tunable absorption properties: superior photocatalytic activity for degradation of methylene blue. Mater Chem Phys 269:124734. https://doi.org/10.1016/J.MATCHEMPHYS.2021.124734

    Article  Google Scholar 

  55. Elviera YY, Apriandanu DOB, Marcony Surya R (2022) Fabrication of novel SnWO4/ZnO using Muntingia calabura L. leaf extract with enhanced photocatalytic methylene blue degradation under visible light irradiation. Ceram Int 48:3564–3577. https://doi.org/10.1016/J.CERAMINT.2021.10.135

    Article  Google Scholar 

  56. Guliani A, Kumari A, Acharya A (2021) Green synthesis of gold nanoparticles using aqueous leaf extract of Populus alba: characterization, antibacterial and dye degradation activity. Int J Environ Sci Technol (Tehran) 18:4007–4018. https://doi.org/10.1007/S13762-020-03065-5

    Article  Google Scholar 

  57. Kasinathan K, Kennedy J, Elayaperumal M, Henini M, Malik M (2016) Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Sci Rep 6:38064. https://doi.org/10.1038/srep38064

    Article  Google Scholar 

  58. Perumal V, Inmozhi C, Uthrakumar R, Robert R, Chandrasekar M, Beer M.S, Shehla H, Raja A, Fahd A Al M, Kaviyarasu K, (2022) Enhancing the photocatalytic performance of surface-treated SnO2 hierarchical nanorods against methylene blue dye under solar irradiation and biological degradation, Environ. Res., 209, 112821. https://doi.org/10.1016/j.envres.2022.112821

  59. Perumal V, Uthrakumar R, Chinnathambi M, Inmozhi C, Robert R, Rajasaravanan ME, Raja A, Kaviyarasu K (2023) Electron-hole recombination effect of SnO2-CuO nanocomposite for improving methylene blue photocatalytic activity in wastewater treatment under visible light. J. King Saud Univ. Sci. 35:102388. https://doi.org/10.1016/j.jksus.2022.102388

    Article  Google Scholar 

  60. Paramanantham P, Anju VT, Lal SB, Alok S, Siddhardha B, Kaviyarasu K, Mohammed A, Turki D, Asad S (2019) Synthesis and antimicrobial photodynamic effect of methylene blue conjugated carbon nanotubes on E. coli and S. aureus. Photochem. Photobiol. Sci. 18:563–576. https://doi.org/10.1039/c8pp00369f

    Article  Google Scholar 

  61. Amal G, Magimai Antoni RD, Venci X, Dhayal Raj A, Albert Irudayaraj A, Josephine RL, John Sundaram S, Amal A, Al M, Dunia A, Al F, Tse-Wei C, Kaviyarasu K (2022) Photocatalytic effect of CuO nanoparticles flower-like 3D nanostructures under visible light irradiation with the degradation of methylene blue (MB) dye for environmental application. Environ. Res. 203:111880. https://doi.org/10.1016/j.envres.2021.111880

    Article  Google Scholar 

  62. Venci X, Amal G, Rahul S, Dhayal Raj A, Albert Irudayaraj A, Josephine RL, John Sundaram S, Kaviyarasu K (2023) Investigation on the formation of self-assembled CdSe dendrite structures and their photocatalytic efficiency. Inorg. Chem. Commun. 148:110309. https://doi.org/10.1016/j.inoche.2022.110309

    Article  Google Scholar 

  63. Alhaji NMI, Nathiya D, Kaviyarasu K, Meshram M, Ayeshamariam A (2019) A comparative study of structural and photocatalytic mechanism of AgGaO2 nanocomposites for equilibrium and kinetics evaluation of adsorption parameters. Surf. Interfaces 17:100375. https://doi.org/10.1016/j.surfin.2019.100375

    Article  Google Scholar 

  64. Fuad A, Turki D, Saleh A (2021) Ecofriendly and low-cost synthesis of ZnO nanoparticles from Acremonium potronii for the photocatalytic degradation of azo dyes. Environ. Res. 202:111700. https://doi.org/10.1016/j.envres.2021.111700

    Article  Google Scholar 

  65. Vijayaraghavan K, Ashokkumar T (2017) Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J. Environ. Chem. Eng. 5:4866–4883. https://doi.org/10.1016/j.jece.2017.09.026

    Article  Google Scholar 

  66. Tharmaraj V, Anbu Anjugam Vandarkuzhali S, Karthikeyan G, Pachamuthu MP (2022) Efficient and recyclable AuNPs/aminoclay nanocomposite catalyst for the reduction of organic dyes. Surf. Interfaces 32:102052. https://doi.org/10.1016/J.SURFIN.2022.102052

    Article  Google Scholar 

  67. Meena PL, Surela AK, Poswal K et al (2022) Biogenic synthesis of Bi2O3 nanoparticles using Cassia fistula plant pod extract for the effective degradation of organic dyes in aqueous medium. Biomass Convers. Biorefin. 66:13–17. https://doi.org/10.1007/S13399-022-02605-Y

    Article  Google Scholar 

  68. El-Desouky N, Shoueir K, El-Mehasseb I, El-Kemary M (2022) Synthesis of silver nanoparticles using bio valorization coffee waste extract: photocatalytic flow-rate performance, antibacterial activity, and electrochemical investigation. Biomass Convers Biorefin 17:11–23. https://doi.org/10.1007/S13399-021-02256-5/TABLES/7

    Article  Google Scholar 

Download references

Acknowledgements

A special thanks goes to the Departments of Physics and Chemistry of St. Joseph’s College (Autonomous), Tiruchirappalli, for their assistance and lab facilities.

Funding

In recognition of the funding received from St. Joseph’s College (Autonomous), Tiruchirappalli, the authors acknowledge SJCRG 2021-2022 as the scheme that funded this research.

Author information

Authors and Affiliations

Authors

Contributions

Ebenezer Thaninayagam: formal analysis, software, data curation, funding acquisition, visualization, writing, and review and editing. R.R. Gopi: software, formal analysis, methodology, and review and editing. H. Joy Prabu: investigation, supervision, original draft, project administration, validation, software, and writing — review and editing. A. Arunviveke: validation, validation, software, writing, and review and editing. I. Johnson: software, validation, writing, review, and visualization. Allen Joseph Anthuvan: formal analysis, methodology, validation, and review. S. John Sundaram: visualization, software, data curation, funding acquisition, and writing and editing. K. Kaviyarasu: visualization, validation, writing, and review and editing.

Corresponding authors

Correspondence to H. Joy Prabu, S. John Sundaram or K. Kaviyarasu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thaninayagam, E., Gopi, R., Prabu, H.J. et al. Bioreduction of gold nanocolloids using Quercus infectoria (Oliv): UV-assisted cationic-anionic dye degradation. Biomass Conv. Bioref. 13, 3463–3474 (2023). https://doi.org/10.1007/s13399-023-03777-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-023-03777-x

Keywords

Navigation