Log in

Ru-supported mesoporous melamine polymers as efficient catalysts for selective hydrogenation of aqueous 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A Ru-decorated porous melamine polymer is found to be an active catalyst upon selective hydrogenation of aqueous 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan (yield > 99%) under mild (20 bar H2, 30–90 °C), base/additive free conditions. Owing to its porous structure and unique surface chemistry presenting abundant weakly basic N-sites (amine and triazine), the polymeric catalyst could outperform various benchmark Ru catalysts (viz. Ru/AC, Ru/SBA-15, Ru/Nb2O5, Ru/NbOPO4, Ru/NC, and Ru/g-C3N4) in terms of activity and desired product selectivity. The catalytic material was also found to be reusable and maintained good performance during multiple recycles under kinetic regime in batch mode. Furthermore, the polymeric catalyst also showed good performance for selective HMF hydrogenation under intensified conditions in a fixed-bed reactor achieving constant BHMF yield during 20-h steady-state operation under relatively mild conditions (70 °C, 20 bar, WHSV 0.2 h−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  PubMed  Google Scholar 

  2. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513

    Article  CAS  Google Scholar 

  3. Dutta S, De S, Saha B (2012) A brief summary of the synthesis of polyester building-block chemicals and biofuels from 5-hydroxymethylfurfural. ChemPlusChem 77:259–272

    Article  CAS  Google Scholar 

  4. Kumalaputri AJ, Bottari G, Erne PM, Heeres HJ, Barta K (2014) Tunable and selective conversion of 5-HMF to 2,5-furandimethanol and 2,5-dimethylfuran over copper-doped porous metal oxides. Chemsuschem 7:2266–2275

    Article  CAS  PubMed  Google Scholar 

  5. Nagpure AS, Gogoi P, Lucas N, Chilukuri SV (2020) Novel Ru nanoparticle catalysts for the catalytic transfer hydrogenation of biomass-derived furanic compounds. Sustainable Energy Fuels 4:3654–3667

    Article  CAS  Google Scholar 

  6. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  CAS  PubMed  Google Scholar 

  7. Chatterjee M, Ishizaka T, Kawanami H (2014) Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan using Pt/MCM-41 in an aqueous medium: a simple approach. Green Chem 16:4734–4739

    Article  CAS  Google Scholar 

  8. Buntara T, Noel S, Phua PH, Melián-Cabrera I, de Vries JG, Heeres HJ (2011) Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone. Angew Chem 123:7221–7225

    Article  ADS  Google Scholar 

  9. De S, Burange AS, Luque R (2022) Conversion of biomass-derived feedstocks into value-added chemicals over single-atom catalysts. Green Chem 24:2267–2286

    Article  CAS  Google Scholar 

  10. Fujita S, Nakajima K, Yamasaki J, Mizugaki T, Jitsukawa K, Mitsudome T (2020) Unique catalysis of nickel phosphide nanoparticles to promote the selective transformation of biofuranic aldehydes into diketones in water. ACS Catal 10:4261–4267

    Article  CAS  Google Scholar 

  11. Wozniak B, Spannenberg A, Li Y, Hinze S, de Vries JG (2018) Cyclopentanone derivatives from 5-hydroxymethylfurfural via 1-hydroxyhexane-2, 5-dione as intermediate. Chemsuschem 11:356–359

    Article  CAS  PubMed  Google Scholar 

  12. Mishra DK, Cho JK, Yi Y, Lee HJ, Kim YJ (2019) Hydroxyapatite supported gold nanocatalyst for base-free oxidative esterification of 5-hydroxymethyl-2-furfural to 2,5-furan dimethylcarboxylate with air as oxidant. J Ind Eng Chem 70:338–345

    Article  CAS  Google Scholar 

  13. Zeng C, Seino H, Ren J, Hatanaka K, Yoshie N (2013) Bio-based furan polymers with self-healing abilitY. Macromolecules 46:1794–1802

    Article  ADS  CAS  Google Scholar 

  14. Hu L, Xu J, Zhou S, He A, Tang X, Lin L, Xu J, Zhao Y (2018) Catalytic advances in the production and application of biomass-derived 2, 5-dihydroxymethylfuran. ACS Catal 8:2959–2980

    Article  CAS  Google Scholar 

  15. Cao Q, Liang W, Guan J, Wang L, Qu Q, Zhang X, Wang X, Mu X (2014) Catalytic synthesis of 2, 5-bis-methoxymethylfuran: a promising cetane number improver for diesel. Appl Catal A 481:49–53

    Article  CAS  Google Scholar 

  16. Alamillo R, Tucker M, Chia M, Pagan-Torres Y, Dumesic J (2012) The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chem 14:1413–1419

    Article  CAS  Google Scholar 

  17. Che P, Lu F, Zhang J, Huang Y, Nie X, Gao J, Xu J (2012) Catalytic selective etherification of hydroxyl groups in 5-hydroxymethylfurfural over H4SiW12O40/MCM-41 nanospheres for liquid fuel production. Bioresour Technol 119:433–436

    Article  CAS  PubMed  Google Scholar 

  18. Vikanova K, Redina E, Kapustin G, Chernova M, Tkachenko O, Nissenbaum V, Kustov L (2021) Advanced room-temperature synthesis of 2, 5-bis (hydroxymethyl) furan—a monomer for biopolymers—from 5-hydroxymethylfurfural. ACS Sustain Chem Eng 9:1161–1171

    Article  CAS  Google Scholar 

  19. Chimentão RJ, Oliva H, Belmar J, Morales K, Mäki-Arvela P, Wärnå J, Murzin DY, Fierro J, Llorca J, Ruiz D (2019) Selective hydrodeoxygenation of biomass derived 5-hydroxymethylfurfural over silica supported iridium catalysts. Appl Catal B 241:270–283

    Article  Google Scholar 

  20. Chimentão RJ, Oliva H, Russo V, Llorca J, Fierro JL, Maki-Arvela P, Murzin DY, Ruiz D (2021) Catalytic transformation of biomass-derived 5-hydroxymethylfurfural over supported bimetallic iridium-based catalysts. The Journal of Physical Chemistry C 125:9657–9678

    Article  Google Scholar 

  21. Fulignati S, Antonetti C, Licursi D, Pieraccioni M, Wilbers E, Heeres HJ, Galletti AMR (2019) Insight into the hydrogenation of pure and crude HMF to furan diols using Ru/C as catalyst. Appl Catal A 578:122–133

    Article  CAS  Google Scholar 

  22. Mishra DK, Lee HJ, Truong CC, Kim J, Suh YW, Baek J, Kim YJ (2020) Ru/MnCo2O4 as a catalyst for tunable synthesis of 2,5-bis(hydroxymethyl) furan or 2,5-bis(hydroxymethyl)tetrahydrofuran from hydrogenation of 5-hydroxymethylfurfural. Mol Catal 484:110722

    Article  CAS  Google Scholar 

  23. Fulignati S, Antonetti C, Wilbers E, Licursi D, Heeres HJ, Galletti AMR (2021) Tunable HMF hydrogenation to furan diols in a flow reactor using Ru/C as catalyst. J Ind Eng Chem 100:390.e1-390.e9

    Article  CAS  Google Scholar 

  24. Wang T, Zhang J, **e W, Tang Y, Guo D, Ni Y (2017) Catalytic transfer hydrogenation of biobased HMF to 2, 5-bis-(hydroxymethyl) furan over Ru/Co3O4. Catalysts 7:92

    Article  CAS  Google Scholar 

  25. Chen J, Lu F, Zhang J, Yu W, Wang F, Gao J, Xu J (2013) Immobilized Ru clusters in nanosized mesoporous zirconium silica for the aqueous hydrogenation of furan derivatives at room temperature. ChemCatChem 5:2822–2826

    Article  CAS  Google Scholar 

  26. Cerezo-Navarrete C, Mathieu Y, Puche M, Morales C, Concepción P, Martínez-Prieto LM, Corma A (2021) Controlling the selectivity of bimetallic platinum–ruthenium nanoparticles supported on N-doped graphene by adjusting their metal composition. Catal Sci Technol 11:494–505

    Article  CAS  Google Scholar 

  27. Ohyama J, Esaki A, Yamamoto Y, Arai S, Satsuma A (2013) Selective hydrogenation of 2-hydroxymethyl-5-furfural to 2,5-bis(hydroxymethyl)furan over gold sub-nano clusters. RSC Adv 3:1033–1036

    Article  ADS  CAS  Google Scholar 

  28. Kim J, Bathula HB, Yun S, Jo Y, Lee S, Baik JH, Suh Y-W (2021) Hydrogenation of 5-hydroxymethylfurfural into 2, 5-bis (hydroxymethyl) furan over mesoporous Cu–Al2O3 catalyst: From batch to continuous processing. J Ind Eng Chem 102:186–194

    Article  CAS  Google Scholar 

  29. Lima S, Chadwick D, Hellgardt K (2017) Towards sustainable hydrogenation of 5-(hydroxymethyl)furfural: a two-stage continuous process in aqueous media over RANEY® catalysts. RSC Adv 7:31401–31407

    Article  ADS  CAS  Google Scholar 

  30. Feng Y, Yan G, Wang T, Jia W, Zeng X, Sperry J, Sun Y, Tang X, Lei T, Lin L (2019) Cu 1–Cu 0 bicomponent CuNPs@ ZIF-8 for highly selective hydrogenation of biomass derived 5-hydroxymethylfurfural. Green Chem 21:4319–4323

    Article  CAS  Google Scholar 

  31. Rao KTV, Hu Y, Yuan Z, Zhang Y, Xu CC (2021) Green synthesis of heterogeneous copper-alumina catalyst for selective hydrogenation of pure and biomass-derived 5-hydroxymethylfurfural to 2, 5-bis (hydroxymethyl) furan. Appl Catal A 609:117892

    Article  CAS  Google Scholar 

  32. Subbiah S, Simeonov SP, Esperança JM, Rebelo LPN, Afonso CA (2013) Direct transformation of 5-hydroxymethylfurfural to the building blocks 2, 5-dihydroxymethylfurfural (DHMF) and 5-hydroxymethyl furanoic acid (HMFA) via Cannizzaro reaction. Green Chem 15:2849–2853

    Article  CAS  Google Scholar 

  33. Wiesfeld JJ, Kim M, Nakajima K, Hensen EJ (2020) Selective hydrogenation of 5-hydroxymethylfurfural and its acetal with 1, 3-propanediol to 2, 5-bis (hydroxymethyl) furan using supported rhenium-promoted nickel catalysts in water. Green Chem 22:1229–1238

    Article  CAS  Google Scholar 

  34. Padilla R, Koranchalil S, Nielsen M (2020) Efficient and selective catalytic hydrogenation of furanic aldehydes using well defined Ru and Ir pincer complexes. Green Chem 22:6767–6772

    Article  CAS  Google Scholar 

  35. Bui TQ, Konwar LJ, Samikannu A, Nikjoo D, Mikkola J-P (2020) Mesoporous melamine-formaldehyde resins as efficient heterogeneous catalysts for continuous synthesis of cyclic carbonates from epoxides and gaseous CORu3p. ACS Sustain Chemi Eng 8:12852–12869

    Article  CAS  Google Scholar 

  36. Donoeva B, Masoud N, De Jongh PE (2017) Carbon support surface effects in the gold-catalyzed oxidation of 5-hydroxymethylfurfural. ACS Catal 7:4581–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Konwar LJ, M J-P (2022) Carbon support effects on metal (Pd, Pt and Ru) catalyzed hydrothermal decarboxylation/deoxygenation of triglycerides. Appl Catal A 638(2022):118611

    Article  CAS  Google Scholar 

  38. Shcherban N, Mäki-Arvela P, Aho A, Sergiienko S, Yaremov P, Eränen K, Murzin DY (2018) Melamine-derived graphitic carbon nitride as a new effective metal-free catalyst for Knoevenagel condensation of benzaldehyde with ethylcyanoacetate, Catalysis. Sci Technol 8:2928–2937

    CAS  Google Scholar 

  39. Samikannu A, Konwar LJ, Mäki-Arvela P, Mikkola J-P (2019) Renewable N-doped active carbons as efficient catalysts for direct synthesis of cyclic carbonates from epoxides and CO2. Appl Catal B 241:41–51

    Article  CAS  Google Scholar 

  40. Gu S, **e J, Li CM (2014) Hierarchically porous graphitic carbon nitride: large-scale facile synthesis and its application toward photocatalytic dye degradation. RSC Adv 4:59436–59439

    Article  ADS  CAS  Google Scholar 

  41. Teng W, Wu Z, Fan J, Zhang W-X, Zhao D (2015) Amino-functionalized ordered mesoporous carbon for the separation of toxic microcystin-LR. J Mater Chem A 3:19168–19176

    Article  CAS  Google Scholar 

  42. Houshang F, Fatemeh H, Rahmatollah R, Ali G (2014) Surfactant-free hydrothermal synthesis of mesoporous niobia samples and their photoinduced decomposition of terephthalic acid (TPA). J Cluster Sci 25:651–666

    Article  CAS  Google Scholar 

  43. Kokunešoski M, Gulicovski J, Matović B, Logar M, Milonjić SK, Babić B (2010) Synthesis and surface characterization of ordered mesoporous silica SBA-15. Mater Chem Phys 124:1248–1252

    Article  Google Scholar 

  44. Kosmulski M (2016) Isoelectric points and points of zero charge of metal (hydr) oxides: 50 years after Parks’ review. Adv Coll Interface Sci 238:1–61

    Article  CAS  Google Scholar 

  45. Pan C-J, Tsai M-C, Su W-N, Rick J, Akalework NG, Agegnehu AK, Cheng S-Y, Hwang B-J (2017) Tuning/exploiting strong metal-support interaction (SMSI) in heterogeneous catalysis. J Taiwan Inst Chem Eng 74:154–186

    Article  CAS  Google Scholar 

  46. Stefano C, Hadi N, Ferenc S, Claudio E, Villa A, Prati L (2018) Ruthenium on carbonaceous materials for the selective hydrogenation of HMF. Molecules 23(8):2007

    Article  Google Scholar 

  47. **a H, Xu S, Hu H, An J, Li C (2018) Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo-and bio-catalysis. RSC Adv 8:30875–30886

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mohsen-Nia M, Amiri H, Jazi B (2010) Dielectric constants of water, methanol, ethanol, butanol and acetone: measurement and computational study. J Solution Chem 39:701–708

    Article  CAS  Google Scholar 

  49. Tucker I, Corbett J, Fatkin J, Jack R, Kaszuba M, MacCreath B, McNeil-Watson F (2015) Laser Doppler Electrophoresis applied to colloids and surfaces. Curr Opin Colloid Interface Sci 20:215–226

    Article  CAS  Google Scholar 

  50. Brunner E (1985) Solubility of hydrogen in 10 organic solvents at 298.15, 323.15, and 373.15 K. J Chem Eng Data 30:269–273

    Article  CAS  Google Scholar 

  51. De la Iglesia O, Mainar AM, Pardo JI, Urieta JS (2003) Solubilities of nonpolar gases in triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dimethyl carbonate, and diethyl carbonate at 298.15 K and 101.33 kPa partial pressure of gas. J Chem Eng Data 48:657–661

    Article  Google Scholar 

  52. Turkin A, Eyley S, Preegel G, Thielemans W, Makshina E, Sels BF (2021) How trace impurities can strongly affect the hydroconversion of biobased 5-hydroxymethylfurfural? ACS Catal 11:9204–9209

    Article  CAS  Google Scholar 

  53. Michel C, Gallezot P (2015) Why is ruthenium an efficient catalyst for the aqueous-phase hydrogenation of biosourced carbonyl compounds? ACS Catal 5:4130–4132

    Article  CAS  Google Scholar 

  54. Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S, b. (2018) How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem Rev 118:11023–11117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The PRIS registration number of this publication is CSIR-CSMCRI – 13/2022. The authors also thank the Analytical Division and Centralized Instrumental Facilities of this institute for analytical support.

Funding

Financial support from SERB (SRG/2020/000325) and MLP0028 from CSIR, New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

M. Mani: data curation, investigation, visualization, writing-original draft; G.K. Govind: investigation, data curation; A.B. Panda: supervision, writing — review and editing; L.J. Konwar: conceptualization, supervision, funding acquisition, writing — review and editing, and project administration.

Corresponding author

Correspondence to Lakhya Jyoti Konwar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34.3 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, M., Kadam, G.G., Konwar, L.J. et al. Ru-supported mesoporous melamine polymers as efficient catalysts for selective hydrogenation of aqueous 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan. Biomass Conv. Bioref. 14, 6267–6284 (2024). https://doi.org/10.1007/s13399-022-02768-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02768-8

Keywords

Navigation