Log in

Copper dispersed natural kaolinite as high-performance catalysts for the hydrolysis of cellulose in water

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Kaolinite is a layered silicate material with a Janus character and has been directly used as the solid catalyst for the hydrolysis of cellulose in our previous work. Reducing sugar (RS) is one of the most important intermediates for the utilization of cellulose. In the present study, metal ions dispersed on kaolinite was easily prepared and further evaluated for the hydrolysis of cellulose to RS in water. The metal ions dispersed kaolinite was characterized by XRD, BET, SEM(EDS), and XPS. The catalytic results showed that copper was the best co-catalyst among the tested metal ions and the kaolinite treated with 4(wt)% copper nitrate by calcination at 623 K showed the highest total reducing sugar (TRS) yield of 51% under 478 K with the mass ratio of catalyst to cellulose of 0.2 and weight ratio of water to cellulose of 7 for 3 h. Moreover, the catalyst could be easily regenerated by calcination and the yield of TRS on the regenerated catalyst decreased from 51 to 43.2% after four times reuse. The characterization results revealed that copper was highly dispersed on the outer SiO4 tetrahedral layer. The surface cuprous species were the active sites and could make the C-O bond cleavage easily by attacking the positively charged carbon atoms of the β-(1,4)-glycosidic linkage in the cellulose. The leaching of the cuprous species was responsible for the deactivation of the catalyst. The copper dispersed kaolinite is the efficient catalyst for the hydrolysis cellulose to reducing sugars and worth further development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gallezot P (2012) Chem Soc Rev 41(4):1538–1558

    Article  Google Scholar 

  2. Sikarwar VS, Zhao M, Clough P, Yao J, Zhong X, Memon MZ, Shah N, Anthony EJ, Fennell PS (2016) Energy Environ Sci 9(10):2939–2977

    Article  Google Scholar 

  3. Fang RQ, Dhakshinamoorthy A, Li YW, Garcia H (2020) Chem Soc Rev 49(11):3638–3687

    Article  Google Scholar 

  4. Liu CJ, Wang HM, Karim AM, Sun JM, Wang Y (2014) Chem Soc Rev 43(22):7594–7623

    Article  Google Scholar 

  5. Sindhu R, Binod P, Pandey A (2016) Bioresour Technol 199:76–82

    Article  Google Scholar 

  6. Wu X, Luo N, **e S, Zhang H, Zhang Q, Wang F, Wang Y (2020) Chem Soc Rev 49(17):6198–6223

    Article  Google Scholar 

  7. Kostag M, El Seoud OA (2021) Carbohydr Polym Technol Appl 2:100079

    Google Scholar 

  8. He X, Lu W, Sun C, Khalesi H, Mata A, Andaleeb R, Fang Y (2021) Carbohydr Polym 255:117334

    Article  Google Scholar 

  9. Houfani AA, Anders N, Spiess AC, Baldrian P, Benallaoua S (2020) Biomass Bioenerg 134:105481

    Article  Google Scholar 

  10. O Oyola-Rivera, J. He GW Huber, JA Dumesic, N. Cardona-Martínez, (2022) Biomass Bioenerg 156 (1) 106315

  11. Wu K (2018) G Feng, Y Liu, C Liu, X Zhang, S Liu, B Liang, H Lu. Bioresour Technol 261:28–35

    Article  Google Scholar 

  12. Yang Y, Shao S, Yang F, Brewe DL, Guo S, Ren D, Hao S (2021) Green Chem 23(12):4477–4489

    Article  Google Scholar 

  13. Aspromonte SG, Romero A, Boix AV, Alonso E (2019) Cellulose 26(4):2471–2485

    Article  Google Scholar 

  14. Wang X, Wu X, Guo K, Ren J, Lin Q, Li H, Liu S (2019) Catal Lett 150(1):138–149

    Article  Google Scholar 

  15. Geboers J, Van De Vyver S, Carpentier K, Jacobs P, Sels B (2011) Chem Commun 47(19):5590–5592

    Article  Google Scholar 

  16. Wu T, Li N, Pan X, Chen S-L (2020) Cellulose 27(16):9201–9215

    Article  Google Scholar 

  17. Huang L, Song C, Liu Y, Lin H, Ye W, Huang H, Lu R, Zhang S (2021) Microporous Mesoporous Mater 318:111024

    Article  Google Scholar 

  18. Zhang B, Chen B, Douthwaite M, Liu Q, Zhang C, Wu Q, Shi R, Wu P, Zhao F, Hutchings G (2018) Green Chem 20(15):3634–3642

    Article  Google Scholar 

  19. Almohalla M, Rodríguez-Ramos I, Ribeiro LS, Órfão JJM, Pereira MFR, Guerrero-Ruiz A (2018) Catal Today 301:65–71

    Article  Google Scholar 

  20. Fan G, Liao C, Fang T, Luo S, Song G (2014) Carbohydr Polym 112:203–209

    Article  Google Scholar 

  21. Wen Z, Yu L, Mai F, Ma Z, Chen H, Li Y (2019) Ind Eng Chem Res 58(38):17675–17681

    Article  Google Scholar 

  22. Zuo Y, Zhang Y, Fu Y (2014) ChemCatChem 6(3):753–757

    Article  Google Scholar 

  23. Zhou Y, Yang M, Tong D, Yang H, Fang K (2019) Molecules 24(9):1832

    Article  Google Scholar 

  24. Yang H, Zhou Y, Tong D, Yang M, Fang K, Zhou C, Yu W (2020) Appl Clay Sci 185:105376

    Article  Google Scholar 

  25. Yang H, Tong D, Dong Y, Ren L, Fang K, Zhou C, Yu W (2020) Appl Clay Sci 188:105512

    Article  Google Scholar 

  26. Dong Y, Tong D, Ren L, Chen X, Zhang H, Yu W, Zhou C (2021) Catal Lett 151(10):2797–2806

    Article  Google Scholar 

  27. Dutta, S., S. De, M.I. Alam, M.M. Abu-Omar, B. Saha, and B. (2012) J Catal 288 (C): 8–15

  28. Wang N, Zhang J, Wang H, Li Q, Wei SA, Wang D (2014) Bioresour. Technol 173:399–405

    Google Scholar 

  29. Hirsemann D, Shylesh S, De Souza RA, Diar-Bakerly B, Biersack B, Mueller DN, Martin M, Schobert R, Breu J (2012) Angew Chem Int Ed 51(6):1348–1352

    Article  Google Scholar 

  30. Yan X, Cayla Al, Devaux E, Otazaghine B, Salaün F (2019) Ind Eng Chem Res 58(25):10931–10940

    Article  Google Scholar 

  31. Hu L, Wu Z, Xu J, Zhou S, Tang G (2016) Korean J Chem Eng 33(4):1232–1238

    Article  Google Scholar 

  32. Li C, Huang Y, Dong X, Sun Z, Duan X, Ren B, Zheng S, Dionysiou DD (2019) Appl Catal B 247:10–23

    Article  Google Scholar 

  33. Temuu** J, Burmaa G, Amgalan J, Okada K, Jadambaa T, MacKenzie KJD (2001) J Porous Mat 8(3):233–238

    Article  Google Scholar 

  34. Biesinger MC, Lau LWM, Gerson AR, Smart RSC (2010) Appl Surf Sci 257(3):887–898

    Article  Google Scholar 

  35. Gaudin P, Fioux P, Dorge S, Nouali H, Vierling M, Fiani E, Molière M, Brilhac J-F, Patarin J (2016) Fuel Process Technol 153:129–136

    Article  Google Scholar 

  36. Anpo M, Nomura T, Kitao T, Giamello E, Fox MA (1991) Chem Lett 20(5):889–892

    Article  Google Scholar 

  37. Yin Y, Tan P, Liu X-Q, Zhu J, Sun L-B (2014) J Mater Chem 2(10):3399–3406

    Article  Google Scholar 

  38. Hu L, Wu Z, Xu J, Sun Y, Lin L, Liu S (2014) Chem Eng J 244:137–144

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (21506188), the Natural Science Foundation of Zhejiang Province ZJNSF (LY16B030010), China Postdoctoral Science Foundation (2018M630688), and Project of Zhejiang “151” talents project.

Author information

Authors and Affiliations

Authors

Contributions

Dongshen Tong: conceptualization, methodology, writing-original draft, funding acquisition, software. **ngtao Chen: methodology, writing-review and editing. Yuxiao Dong: methodology, investigation, data curation. Zhi Fang: software, data curation. Hao Zhang: investigation, verification. Chunhui Zhou: supervision. Weihua Yu: methodology, supervision.

Corresponding authors

Correspondence to Dongshen Tong or Weihua Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Cuprous species are the active sites for the hydrolysis of cellulose to reducing sugars in water.

• Copper dispersed kaolinite by treatment between 353 and 623 K shows a broad plateau of TRS yields.

• Copper dispersed kaolinite also presents the high regeneration stability.

• Cuprous species make the C-O bond cleavage easily by attacking the positively charged carbon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, D., Chen, X., Dong, Y. et al. Copper dispersed natural kaolinite as high-performance catalysts for the hydrolysis of cellulose in water. Biomass Conv. Bioref. 14, 5295–5304 (2024). https://doi.org/10.1007/s13399-022-02764-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02764-y

Keywords

Navigation