Log in

Bioaugmentation of thermophilic lignocellulose degrading bacteria accelerate the composting process of lignocellulosic materials

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In the present work, the influence of feedstock composition (high and low lignin percentage) and addition of lignocellulose degrading bacterial isolates on final compost quality has been studied. The evaluation is based on respiration activity, temperature, nitrate and humic acid concentrations, elemental analysis, C/N ratio, pH, humic acids’ functional groups, and FTIR monitoring over the composting period. The results exhibited that the highest lignin feedstocks lead to higher respiration activity, spectral absorbance, total acidity, C/N ratio, nitrate concentration, pH, and temperature than low lignin feedstocks. Conversely, low lignin feedstocks generated higher humic acid and carboxylic group’s density than high lignin feedstocks. At the end of the composting period, FTIR absorption, oxygen, sulfur, and O/C ratio increased in all treatments while carbon, hydrogen, C/N, and H/C ratios decreased. Bacterial consortium addition to low/high lignin feedstocks contribute to a prolonged thermophilic phase for one and two days, respectively, shortening the compost production duration by about four and eight weeks, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Kluczek-Turpeinen B, Tuomela M, Hatakka A, Hofrichter M (2003) Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus. Appl Microbiol Biotechnol 61(4):374–379

    Article  Google Scholar 

  2. de Mendonça Costa LA, de Mendonça Costa MSS, Damaceno FM, Chiarelotto M, Bofinger J, Gazzola W (2021) Bioaugmentation as a strategy to improve the compost quality in the composting process of agro-industrial wastes. Environ Technol Innov 22:101478

    Article  Google Scholar 

  3. Kutzner HJ (2000) Microbiology of composting. In: Rehm HJ, Reed G, Pühler A, Stadler P (Hrsg) Biotechnology, 2. Aufl. Bd. 11c. Wiley-VCH, Weinheim, pp 35–100

  4. Štursová M, Šnajdr J, Koukol O, Tláskal V, Cajthaml T, Baldrian P (2020) Long-term decomposition of litter in the montane forest and the definition of fungal traits in the successional space. Fungal Ecol 46:100913

    Article  Google Scholar 

  5. Wang WK, Liang CM (2021) Enhancing the compost maturation of swine manure and rice straw by applying bioaugmentation. Sci Rep 11:6103. https://doi.org/10.1038/s41598-021-85615-6

    Article  Google Scholar 

  6. Hemati A, Aliasgharzad N, Khakvar R, Khoshmanzar E, Asgari Lajayer B, van Hullebusch ED (2021) Role of lignin and thermophilic lignocellulolytic bacteria in the evolution of humification indices and enzymatic activities during compost production. Waste Manag 119:122–134

    Article  Google Scholar 

  7. Yu H, Zeng G, Huang H, ** X, Wang R, Huang D, Huang G, Li J (2007) Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18(6):793–802

    Article  Google Scholar 

  8. Vargas-García M, Suárez-Estrella F, López M, Moreno J (2010) Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Manag 30(5):771–778

    Article  Google Scholar 

  9. Xu J, Jiang Z, Li M, Li Q (2019) A compost-derived thermophilic microbial consortium enhances the humification process and alters the microbial diversity during composting. J Environ Manag 243:240–249

    Article  Google Scholar 

  10. Yang Y, Du W, Ren X, Cui Z, Zhou W, Lv J (2020) Effect of bean dregs amendment on the organic matter degradation, humification, maturity and stability of pig manure composting. Sci Total Environ 708:134623

    Article  Google Scholar 

  11. Pérez J, Munoz-Dorado J, De la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5(2):53–63

    Article  Google Scholar 

  12. Wei Y, Wu D, Wei D, Zhao Y, Wu J, **e X, Zhang R, Wei Z (2019) Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities. Biores Technol 271:66–74

    Article  Google Scholar 

  13. Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Biores Technol 72(2):169–183

    Article  Google Scholar 

  14. Ryckeboer J, Mergaert J, Coosemans J, Deprins K, Swings J (2003) Microbiological aspects of biowaste during composting in a monitored compost bin. J Appl Microbiol 94(1):127–137

    Article  Google Scholar 

  15. Huang GF, Wu QT, Wong J, Nagar B (2006) Transformation of organic matter during co-composting of pig manure with sawdust. Biores Technol 97(15):1834–1842

    Article  Google Scholar 

  16. Vikman M, Karjomaa S, Kapanen A, Wallenius K, Itävaara M (2002) The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions. Appl Microbiol Biotechnol 59:591–598

    Article  Google Scholar 

  17. Zhong B, An X, An W, **ao X, Li H, **a X, Zhang Q (2021) Effect of bioaugmentation on lignocellulose degradation and antibiotic resistance genes removal during biogas residues composting. Bioresour Technol 340:125742

    Article  Google Scholar 

  18. Chaturvedi S, Kumar A, Singh B, Nain L, Joshi M, Satya S (2013) Bioaugmented composting of Jatropha de-oiled cake and vegetable waste under aerobic and partial anaerobic conditions. J Basic Microbiol 53:327–335

    Article  Google Scholar 

  19. Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TD (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50:5096–5107

    Article  Google Scholar 

  20. Rahmanpour R, Bugg TD (2015) Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: oxidation of Mn (II) and polymeric lignin by Dyp1B. Arch Biochem Biophys 574:93–98

    Article  Google Scholar 

  21. Brown ME, Barros T, Chang MC (2012) Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol 7:2074–2081

    Article  Google Scholar 

  22. Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81:e00063-e16

    Article  Google Scholar 

  23. Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71:60437-1–60515

    Article  Google Scholar 

  24. Portillo M, Villahermosa D, Corzo A, Gonzalez J (2011) Microbial community fingerprinting by differential display-denaturing gradient gel electrophoresis. Appl Environ Microbiol 77(1):351–354

    Article  Google Scholar 

  25. Hu J, Yang Z, Huang Z, Li H, Wu Z, Zhang X, Qin X, Li C, Ruan M, Zhou K (2020) Co-composting of sewage sludge and Phragmites australis using different insulating strategies. Waste Manag 108:1–12

    Article  Google Scholar 

  26. Sánchez-Monedero MA, Cegarra J, García D, Roig A (2002) Chemical and structural evolution of humic acids during organic waste composting. Biodegradation 13(6):361–371

    Article  Google Scholar 

  27. Amir S, Benlboukht F, Cancian N, Winterton P, Hafidi M (2008) Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting. J Hazard Mater 160(2–3):448–455

    Article  Google Scholar 

  28. Yang Y, Shen H, Qiu J (2020) Bio-inspired self-bonding nanofibrillated cellulose composite: a response surface methodology for optimization of processing variables in binderless biomass materials produced from wheat-straw-lignocelluloses. Ind Crops Prod 149:112335

    Article  Google Scholar 

  29. Guo X-x, Liu H-t, Wu S-b (2019) Humic substances developed during organic waste composting: formation mechanisms, structural properties, and agronomic functions. Sci Total Environ 662:501–510

    Article  Google Scholar 

  30. Amir S, Jouraiphy A, Meddich A, El Gharous M, Winterton P, Hafidi M (2010) Structural study of humic acids during composting of activated sludge-green waste: elemental analysis, FTIR and 13C NMR. J Hazard Mater 177(1–3):524–529

    Article  Google Scholar 

  31. Mankar S, Chaudhari A, Soni I (2012) Lignin in phenol-formaldehyde adhesives. Int J Knowl Eng 31:116–118

    Google Scholar 

  32. Hemati A, Aliasgharzad N, Khakvar R (2018) In vitro evaluation of lignocellulolytic activity of thermophilic bacteria isolated from different composts and soils of Iran. Biocatal Agric Biotechnol 14:424–430

    Article  Google Scholar 

  33. Busato JG, Lima LS, Aguiar NO, Canellas LP, Olivares FL (2012) Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria. Biores Technol 110:390–395

    Article  Google Scholar 

  34. Page A, Miller R, Keeney D (1982) Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy. Soil Science Society of America, Madison

    Google Scholar 

  35. Awasthi MK, Pandey AK, Khan J, Bundela PS, Wong JW, Selvam A (2014) Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Biores Technol 168:214–221

    Article  Google Scholar 

  36. Rasapoor M, Nasrabadi T, Kamali M, Hoveidi H (2009) The effects of aeration rate on generated compost quality, using aerated static pile method. Waste Manag 29(2):570–573

    Article  Google Scholar 

  37. Walkley A, Black A (1934) Chromic acid titration for determination of soil organic matter. Soil Sci 63:251

    Article  Google Scholar 

  38. Bremner JM, Mulvaney CS (1982) Total nitrogen. In: Page AL (ed) Methods of Soil Analysis Part 2, Chemical and Microbiological Properties, vol 2. American Society of Agronomy, Madison, pp 595–624

    Google Scholar 

  39. Cataldo D, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6(1):71–80

    Article  Google Scholar 

  40. Qi B, Aldrich C, Lorenzen L (2004) Effect of ultrasonication on the humic acids extracted from lignocellulose substrate decomposed by anaerobic digestion. Chem Eng J 98(1–2):153–163

    Article  Google Scholar 

  41. Meissl K, Smidt E, Schwanninger M (2007) Prediction of humic acid content and respiration activity of biogenic waste by means of Fourier transform infrared (FTIR) spectra and partial least squares regression (PLS-R) models. Talanta 72(2):791–799

    Article  Google Scholar 

  42. Anderson JP (1982) Soil Respiration. In: Alam RH (ed) Methods of Soil Analysis Part 2, Chemical and Microbiological Properties. American Society of Agronomy, Madison, pp 831–871

    Google Scholar 

  43. Adamtey N, Cofie O, Ofosu-Budu GK, Danso SK, Forster D (2009) Production and storage of N-enriched co-compost. Waste Manag 29:2429–2436

    Article  Google Scholar 

  44. Kaushik P, Yadav Y, Dilbaghi N, Garg VK (2008) Enrichment of vermicomposts prepared from cow dung spiked solid textile mill sludge using nitrogen fixing and phosphate solubilizing bacteria. Environmentalist 28(3):283–287

    Article  Google Scholar 

  45. Wiley JS, Pearce GW (1957) A preliminary study of high-rate composting. Trans Am Soc Civ Eng 122(1):1009–1030

    Article  Google Scholar 

  46. Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282(7):1190–1213

    Article  Google Scholar 

  47. Adani F, Genevini P, Tambone F, Montoneri E (2006) Compost effect on soil humic acid: a NMR study. Chemosphere 65(8):1414–1418

    Article  Google Scholar 

  48. Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. Wiley, Hoboken

    Google Scholar 

  49. Tan KH (2003) Humic matter in soil and the environment: principles and controversies. CRC Press, Boca Raton

    Book  Google Scholar 

  50. Niemeyer J, Chen Y, Bollag JM (1992) Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Sci Soc Am J 56(1):135–140

    Article  Google Scholar 

  51. Francioso O, Sanchez-Cortes S, Tugnoli V, Ciavatta C, Gessa C (1998) Characterization of peat fulvic acid fractions by means of FT-IR, SERS, and 1H, 13C NMR spectroscopy. Appl Spectrosc 52(2):270–277

    Article  Google Scholar 

  52. Clapp C, Hayes M, Simpson A, Kingery W (2005) Chemistry of soil organic matter. Chem Process Soils 8:1–150

    Google Scholar 

  53. Song G, Novotny E, Simpson A, Clapp C, Hayes M (2008) Sequential exhaustive extraction of a Mollisol soil, and characterizations of humic components, including humin, by solid and solution state NMR. Eur J Soil Sci 59(3):505–516

    Article  Google Scholar 

  54. Adl SM (2003) The ecology of soil decomposition. CABI, Wallingford, p 55

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Arash Hemati: Conducted experimental verification, analyzed the data, and wrote the first draft and revised the manuscript.

Nasser Aliasgharzad and Reza Khakvar: Contributed to the research idea and designed the study.

Nasser Delangiz: Contributed to the wrote the first draft and revised the manuscript.

Behnam Asgari Lajayer: Contributed to the wrote the first draft, revised and submitted the manuscript.

Eric D. van Hullebusch: Helped with constructive discussions and revised the manuscript.

Corresponding authors

Correspondence to Arash Hemati, Behnam Asgari Lajayer or Eric D. van Hullebusch.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 973 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemati, A., Aliasgharzad, N., Khakvar, R. et al. Bioaugmentation of thermophilic lignocellulose degrading bacteria accelerate the composting process of lignocellulosic materials. Biomass Conv. Bioref. 13, 15887–15901 (2023). https://doi.org/10.1007/s13399-021-02238-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02238-7

Keywords

Navigation