Log in

Chemical conversion of furan dicarboxylic acid to environmentally benign polyesters: an overview

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

A Correction to this article was published on 15 September 2021

This article has been updated

Abstract

Massive amounts of unmanaged agricultural waste have drawn attention to the utilization of biomass for the production of prospective chemicals and polymeric materials, as well as their frequent application for generating various forms of energy. Furan dicarboxylic acid (FDCA) has come up as an important platform chemical derived from the lignocellulosic agricultural waste, which can be converted into various products. Polyethylene furan-2, 5-dicarboxylate (PEF), and aligned compounds obtained from FDCA are potential environmentally benign polyesters. These polyesters can efficiently substitute conventionally established polymers, such as polyethylene terephthalate (PET), for different applications. Efforts are required to optimize the properties of PEF, which can be helpful in its commercialization providing it a suitable place for daily life applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 1
Scheme 7
Scheme 8

Similar content being viewed by others

Change history

Abbreviations

GHG:

Greenhouse gas

LCAB:

Lignocellulosic agricultural biomass

FDCA:

Furan dicarboxylic acid

NREL:

National Renewable Energy Laboratory

PEF:

Polyethylene Furanoate

PET:

Polyethylene Terephthalate

TPA:

Terephthalic Acid

HMF:

Hydroxymethyl Furfural

EG:

Ethylene Glycol

DMFDCA:

Dimethyl Furandicarboxylic Acid

1,3-PDO:

1,3-Propanediol

1,4-BDO:

1,4-Butanediol

1,6-HDO:

1,6-Hexanediol

1,8-ODO:

1,8-Octanediol

Tm :

Melting Temperature

Tg :

Glass Transition Temperature

PDI:

Polydispersity Index

1,10-DDO:

1,10-Decanediol

BM:

Bismaleinimide

BPU:

Biobased Polyurethane

DMDC:

Dimethyl Dodecanoate

CHDM:

1,4-Cyclohexanedimethanol

DEFDCA:

Diethyl Furandicarboxylate

BDHPFDC:

Bis(2,3-Dihydropropyl)-2,5-Furandicarboxylate

CBDO:

2,2,4,4-Tetramethyl-1,3-Cyclobutanediol

References

  1. Ragaert K, Delva L, Van Geem K (2017) Mechanical and chemical recycling of solid plastic waste. Waste Manag 69:24–58. https://doi.org/10.1016/j.wasman.2017.07.044

    Article  Google Scholar 

  2. Rahimi A, García JM (2017) Chemical recycling of waste plastics for new materials production. Nat Rev Chem 1:1–11. https://doi.org/10.1038/s41570-017-0046

    Article  Google Scholar 

  3. Hillmyer MA (2017) The promise of plastics from plants. Science 358(6365):868–870. https://doi.org/10.1126/science.aao6711

    Article  Google Scholar 

  4. Hatti-Kaul R, Nilsson LJ, Zhang B, Rehnberg N, Lundmark S (2020) Designing biobased recyclable polymers for plastics. Trends Biotechnol 38:50–67. https://doi.org/10.1016/j.tibtech.2019.04.011

    Article  Google Scholar 

  5. Kircher M (2015) Sustainability of biofuels and renewable chemicals production from biomass. Curr Opin Chem Biol 29:26–31. https://doi.org/10.1016/j.cbpa.2015.07.010

    Article  Google Scholar 

  6. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter G-JM, Coelho JFJ, Silvestre AJD (2015) Biobased polyesters and other polymers from 2, 5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem 6:5961–5983. https://doi.org/10.1039/C5PY00686D

    Article  Google Scholar 

  7. Pan Y, Farmahini-Farahani M, O’Hearn P, **ao H, Ocampo H (2016) An overview of bio-based polymers for packaging materials. J Bioresour Bioprod 1:106–113. https://doi.org/10.21967/jbb.v1i3.49

    Article  Google Scholar 

  8. Keskin G, Kızıl G, Bechelany M, Pochat-Bohatier C, Oner M (2017) Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure Appl Chem 89:1841–1848. https://doi.org/10.1515/pac-2017-0401

    Article  Google Scholar 

  9. Youssef AM, El-Sayed SM (2018) Bionanocomposites materials for food packaging applications: concepts and future outlook. Carbohydr Polym 193:19–27. https://doi.org/10.1016/j.carbpol.2018.03.088

    Article  Google Scholar 

  10. Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540:354–362. https://doi.org/10.1038/nature21001

    Article  Google Scholar 

  11. Obi FO, Ugwuishiwu BO, Nwakaire JN (2016) Agricultural waste concept, generation, utilization and management. Niger J Technol 35:957–964. https://doi.org/10.4314/njt.v35i4.34

    Article  Google Scholar 

  12. Bu F, Lin Q, Zhai QG, Bu X, Feng P (2015) Charge-tunable indium–organic frameworks built from cationic, anionic, and neutral building blocks. Dalt Trans 44:16671–16674. https://doi.org/10.1039/C5DT02861B

    Article  Google Scholar 

  13. Hwang KR, Jeon W, Lee SY, Kim M-S, Park Y-K (2020) Sustainable bioplastics: recent progress in the production of bio-building blocks for the bio-based next-generation polymer PEF. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124636

  14. Lomelí-Rodríguez M, Martín-Molina M, Jiménez-Pardo M, Nasim-Afzal Z, Cauet SI, Davies TE, Rivera-Toledo M, Lopez-Sanchez JA (2016) Synthesis and kinetic modeling of biomass-derived renewable polyesters. J Polym Sci Part A Polym Chem 54:2876–2887. https://doi.org/10.1002/pola.28173

    Article  Google Scholar 

  15. Yu Z, Zhou J, Cao F, Zhang Q, Huang K, Wei P (2016) Synthesis, characterization and thermal properties of bio-based poly (ethylene 2, 5-furan dicarboxylate). J Macromol Sci Part B 55:1135–1145. https://doi.org/10.1080/00222348.2016.1238335

    Article  Google Scholar 

  16. Nasirudeen MB, Hailes HC, Evans JRG (2017) Preparation and Characterization of Biobased Poly (Ethylene-2, 5-Furan Dicarboxylate)/Clay Nanocomposites. Niger J Basic Appl Sci 25:114–124. https://doi.org/10.4314/njbas.v25i2.12

    Article  Google Scholar 

  17. Wang J, Liu X, Jia Z, Sun L, Zhang Y, Zhu J (2018) Modification of poly (ethylene 2, 5-furandicarboxylate)(PEF) with 1, 4-cyclohexanedimethanol: Influence of stereochemistry of 1, 4-cyclohexylene units. Polymer 137:173–185. https://doi.org/10.1016/j.polymer.2018.01.021

    Article  Google Scholar 

  18. Guigo N, Forestier E, Sbirrazzuoli N (2019) Thermal properties of biobased polymers: Furandicarboxylic Acid (FDCA)-based polyesters. In: Di Lorenzo M, Androsch R (eds) Thermal properties of bio-based polymers. Springer, Cham, pp 189–217

  19. Nolasco MM, Araujo CF, Thiyagarajan S, Rudic S, Vaz PD, Silvestre AJD, Ribeiro-Claro PJA, Sousa AF (2020) Asymmetric Monomer, Amorphous Polymer? Structure-Property Relationships in 2, 4-FDCA and 2, 4-PEF. Macromolecules 53:1380–1387. https://doi.org/10.1021/acs.macromol.9b02449

    Article  Google Scholar 

  20. Jiang Y, (2016) Enzymatic synthesis of biobased polyesters and polyamides. University of Groningen, Groningen

  21. Kwiatkowska M, Kowalczyk I, Kwiatkowski K, Szymczyk A, Rosłaniec Z (2016) Fully biobased multiblock copolymers of furan-aromatic polyester and dimerized fatty acid: Synthesis and characterization. Polymer 99:503–512. https://doi.org/10.1016/j.polymer.2016.07.060

    Article  Google Scholar 

  22. Jia Z, Wang J, Sun L, Zhu J, Liu X (2018) Fully bio-based polyesters derived from 2, 5-furandicarboxylic acid (2, 5-FDCA) and dodecanedioic acid (DDCA): from semicrystalline thermoplastic to amorphous elastomer. J Appl Polym Sci 135:46076–46086. https://doi.org/10.1002/app.46076

    Article  Google Scholar 

  23. Jiang Y, Maniar D, Woortman AJJ, Loos K (2016) Enzymatic synthesis of 2,5-furandicarboxylic acid-based semi-aromatic polyamides: enzymatic polymerization kinetics, effect of diamine chain length and thermal properties. RSC Adv 6:67941–67953. https://doi.org/10.1039/C6RA14585J

    Article  Google Scholar 

  24. Jiang Y, Maniar D, Woortman AJJ, van Ekenstein GORA, Loos K (2015) Enzymatic polymerization of furan-2,5-dicarboxylic acid-based furanic-aliphatic polyamides as sustainable alternatives to polyphthalamides. Biomacromol 16:3674–3685. https://doi.org/10.1021/acs.biomac.5b01172

    Article  Google Scholar 

  25. Luo AA (2016) Materials comparison and potential applications of magnesium in automobiles BT—essential readings in magnesium technology. In: Mathaudhu SN, Luo AA, Neelameggham NR, et al (eds) Essential Readings in Magnesium Technology. Springer International Publishing, New York, pp 25–34

  26. Deng J, Liu X, Li C, Jiang Y, Zhu J (2015) Synthesis and properties of a bio-based epoxy resin from 2, 5-furandicarboxylic acid (FDCA). Rsc Adv 5:15930–15939. https://doi.org/10.1039/C5RA00242G

    Article  Google Scholar 

  27. Diao L, Su K, Li Z, Ding C (2016) Furan-based co-polyesters with enhanced thermal properties: poly (1, 4-butylene-co-1, 4-cyclohexanedimethylene-2, 5-furandicarboxylic acid). RSC Adv 6:27632–27639. https://doi.org/10.1039/C5RA27617A

    Article  Google Scholar 

  28. Kanetaka Y, Yamazaki S, Kimura K (2016) High performance polyesters prepared from bio-based 2, 5-Furandicarboxylic Acid. J Fiber Sci Technol 72:54–60. https://doi.org/10.2115/fiberst.2016-0009

    Article  Google Scholar 

  29. Wang G, Jiang M, Zhang Q, Wang R, Zhou G (2017) Biobased copolyesters: synthesis, crystallization behavior, thermal and mechanical properties of poly(ethylene glycol sebacate-co-ethylene glycol 2,5-furan dicarboxylate). RSC Adv 7:13798–13807. https://doi.org/10.1039/C6RA27795K

    Article  Google Scholar 

  30. Eerhart AJJE, Huijgen WJJ, Grisel RJH, van der Waal JC, de Jong E, de Sousa DA, Faaij APC, Patel MK (2014) Fuels and plastics from lignocellulosic biomass via the furan pathway; a technical analysis. RSC Adv 4:3536–3549. https://doi.org/10.1039/C3RA43512A

    Article  Google Scholar 

  31. Brodin M, Vallejos M, Opedal MT, Area MC (2017) Lignocellulosics as sustainable resources for production of bioplastics—a review. J Clean Prod 162:646–664. https://doi.org/10.1016/j.jclepro.2017.05.209

    Article  Google Scholar 

  32. Moscoviz R, Trably E, Bernet N, Carrère H (2018) The environmental biorefinery: state-of-the-art on the production of hydrogen and value-added biomolecules in mixed-culture fermentation. Green Chem 20:3159–3179. https://doi.org/10.1039/C8GC00572A

    Article  Google Scholar 

  33. Loos K, Zhang R, Pereira I, Agostinho B, Hu H, Maniar D, Sbirrazzuoli N, Silvestre AJD, Guigo N, Sousa AF (2020) A Perspective on PEF Synthesis, Properties, and End-Life. Front Chem 8:585–602. https://doi.org/10.3389/fchem.2020.00585

    Article  Google Scholar 

  34. Mutsuga M, Kawamura Y, Sugita-Konishi Y, Hara-Kudo Y, Takatori K, Tanamoto K (2006) Migration of formaldehyde and acetaldehyde into mineral water in polyethylene terephthalate (PET) bottles. Food Addit Contam 23:212–218. https://doi.org/10.1080/02652030500398361

    Article  Google Scholar 

  35. Hosseini SS, Taheri S, Zadhoush A, Mehrabani-Zeinabad A (2007) Hydrolytic degradation of poly(ethylene terephthalate). J Appl Polym Sci 103:2304–2309. https://doi.org/10.1002/app.24142

    Article  Google Scholar 

  36. Depaolini AR, Fattore E, Bianchi G, Fanelli R, Davoli E (2020) Acetaldehyde in polyethylene terephthalate (PET) bottled water: assessment and mitigation of health risk for consumers. Appl Sci 10:4321–4330. https://doi.org/10.3390/app10124321

    Article  Google Scholar 

  37. Cederbaum AI (2012) Alcohol metabolism. Clin Liver Dis 16:667–685. https://doi.org/10.1016/j.cld.2012.08.002

    Article  Google Scholar 

  38. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans Alcohol consumption and ethyl carbamate (2010) IARC Monogr. Eval Carcinog Risks Hum 96:3–1383

    Google Scholar 

  39. Cheng G, Shi Y, Sturla SJ, Jalas JR, McIntee EJ, Villalta PW, Wang M, Hecht SS (2003) Reactions of formaldehyde plus acetaldehyde with deoxyguanosine and DNA: formation of cyclic deoxyguanosine adducts and formaldehyde cross-links. Chem Res Toxicol 16:145–152. https://doi.org/10.1021/tx025614r

    Article  Google Scholar 

  40. Ait Rass H, Essayem N, Besson M (2015) Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2- and ZrO2-based supports. Chemsuschem 8:1206–1217. https://doi.org/10.1002/cssc.201403390

    Article  Google Scholar 

  41. Lolli A, Albonetti S, Utili L, Amadori R, Ospitali F, Lucarelli C, Cavani F (2015) Insights into the reaction mechanism for 5-hydroxymethylfurfural oxidation to FDCA on bimetallic Pd-Au nanoparticles. Appl Catal A Gen 504:408–419. https://doi.org/10.1016/j.apcata.2014.11.020

    Article  Google Scholar 

  42. Liu X, **ao J, Ding H, Zhong W, Xu Q, Su S, Yin D (2016) Catalytic aerobic oxidation of 5-hydroxymethylfurfural over VO2+ and Cu2+ immobilized on amino functionalized SBA-15. Chem Eng J 283:1315–1321. https://doi.org/10.1016/j.cej.2015.08.022

    Article  Google Scholar 

  43. Neațu F, Marin RS, Florea M, Petrea N, Pavel OD, Pârvulescu VI (2016) Selective oxidation of 5-hydroxymethyl furfural over non-precious metal heterogeneous catalysts. Appl Catal B Environ 180:751–757. https://doi.org/10.1016/j.apcatb.2015.07.043

    Article  Google Scholar 

  44. Antonyraj CA, Huynh NTT, Lee KW, Kim YJ, Shin S, Shin JS, Cho JK (2018) Base-free oxidation of 5-hydroxymethyl-2-furfural to 2,5-furan dicarboxylic acid over basic metal oxide-supported ruthenium catalysts under aqueous conditions. J Chem Sci. https://doi.org/10.1007/s12039-018-1551-z

  45. Antonyraj CA, Huynh NTT, Park SK, Shin S, Kim YJ, Kim S, Lee KY, Cho JK (2017) Basic anion-exchange resin (AER)-supported Au-Pd alloy nanoparticles for the oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-furan dicarboxylic acid (FDCA). Appl Catal A Gen 547:230–236. https://doi.org/10.1016/j.apcata.2017.09.012

    Article  Google Scholar 

  46. Yang F, Ding Y, Tang J, Zhou S, Wang B, Kong Y (2017) Oriented surface decoration of (Co-Mn) bimetal oxides on nanospherical porous silica and synergetic effect in biomass-derived 5-hydroxymethylfurfural oxidation. Mol Catal 435:144–155. https://doi.org/10.1016/j.mcat.2017.03.034

    Article  Google Scholar 

  47. Yan D, **n J, Zhao Q, Gao K, Lu X, Wang G, Zhang S (2018) Fe–Zr–O catalyzed base-free aerobic oxidation of 5-HMF to 2,5-FDCA as a bio-based polyester monomer. Catal Sci Technol 8:164–175. https://doi.org/10.1039/C7CY01704A

    Article  Google Scholar 

  48. Megías-Sayago C, Lolli A, Ivanova S, Albonetti S, Cavani F, Odriozola JA (2019) Au/Al2O3—efficient catalyst for 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid. Catal Today 333:169–175. https://doi.org/10.1016/j.cattod.2018.04.024

    Article  Google Scholar 

  49. Serrano A, Calviño E, Carro J, Sanchez-Ruiz MI, Canada FJ, Martinez AT (2019) Complete oxidation of hydroxymethylfurfural to furandicarboxylic acid by aryl-alcohol oxidase. Biotechnol Biofuels 12:217–228. https://doi.org/10.1186/s13068-019-1555-z

    Article  Google Scholar 

  50. **a H, An J, Hong M, Xu SQ, Zhang L, Zuo SL (2019) Aerobic oxidation of 5-hydroxymethylfurfural to 2,5-difurancarboxylic acid over Pd-Au nanoparticles supported on Mg-Al hydrotalcite. Catal Today 319:113–120. https://doi.org/10.1016/j.cattod.2018.05.050

    Article  Google Scholar 

  51. Kerdi F, Ait Rass H, Pinel C, Besson M, Peru G, Leger B, Rio S, Monflier E, Ponchel A (2015) Evaluation of surface properties and pore structure of carbon on the activity of supported Ru catalysts in the aqueous-phase aerobic oxidation of HMF to FDCA. Appl Catal A Gen 506:206–219. https://doi.org/10.1016/j.apcata.2015.09.002

    Article  Google Scholar 

  52. Karich A, Kleeberg SB, Ullrich R, Hofrichter M (2018) Enzymatic preparation of 2,5-furandicarboxylic acid (FDCA)—a substitute of terephthalic acid—by the joined action of three fungal enzymes. Microorganisms 6:5–16. https://doi.org/10.3390/microorganisms6010005

    Article  Google Scholar 

  53. Kucherov FA, Romashov LV, Galkin KI, Ananikov VP (2018) Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks. ACS Sustain Chem Eng 6:8064–8092. https://doi.org/10.1021/acssuschemeng.8b00971

    Article  Google Scholar 

  54. Sajid M, Zhao X, Liu D (2018) Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chem 20:5427–5453. https://doi.org/10.1039/C8GC02680G

    Article  Google Scholar 

  55. Zhang Z, Huber GW (2018) Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem Soc Rev 47:1351–1390. https://doi.org/10.1039/C7CS00213K

    Article  Google Scholar 

  56. Pal P, Saravanamurugan S (2019) Recent Advances in the Development of 5-Hydroxymethylfurfural Oxidation with Base (Nonprecious)-Metal-Containing Catalysts. Chemsuschem 12:145–163. https://doi.org/10.1002/cssc.201801744

    Article  Google Scholar 

  57. Chen G, van Straalen NM, Roelofs D (2016) The ecotoxicogenomic assessment of soil toxicity associated with the production chain of 2, 5-furandicarboxylic acid (FDCA), a candidate bio-based green chemical building block. Green Chem 18:4420–4431. https://doi.org/10.1039/C6GC00430J

    Article  Google Scholar 

  58. Bourdet A, Araujo S, Thiyagarajan S, Delbreilh L, Esposito A, Dargent E (2021) Molecular mobility in amorphous biobased copolyesters obtained with 2,5- and 2,4-furandicarboxylate acid. Polymer 213:123225. https://doi.org/10.1016/j.polymer.2020.123225

    Article  Google Scholar 

  59. Zaidi S, Soares MJ, Bougarech A, Thiyagarajan S, Guigo N, Abid S, Abid M, Silvestre AJD, Sousa AF (2021) Unravelling the para- and ortho-benzene substituent effect on the glass transition of renewable wholly (hetero-)aromatic polyesters bearing 2,5-furandicarboxylic moieties. Eur Polymer J 150:110413–110420. https://doi.org/10.1016/j.eurpolymj.2021.110413

    Article  Google Scholar 

  60. Stoclet G, Du Sart GG, Yeniad B, de Vos S, Lefebvre JM (2015) Isothermal crystallization and structural characterization of poly (ethylene-2, 5-furanoate). Polymer 72:165–176. https://doi.org/10.1016/j.polymer.2015.07.014

    Article  Google Scholar 

  61. Menager C, Guigo N, Martino L, Sbirrazzuoli N, Visser H, Boyer SAE, Billon N, Monge G, Combeaud C (2018) Strain induced crystallization in biobased Poly(ethylene 2,5-furandicarboxylate) (PEF); conditions for appearance and microstructure analysis. Polymer 158:364–371. https://doi.org/10.1016/j.polymer.2018.10.054

    Article  Google Scholar 

  62. Forestier E, Combeaud C, Guigo N, Sbirrazzuoli N, Billon N (2020) Understanding of strain-induced crystallization developments scenarios for polyesters: comparison of poly(ethylene furanoate), PEF, and poly(ethylene terephthalate). PET Polymer 203:122755. https://doi.org/10.1016/j.polymer.2020.122755

    Article  Google Scholar 

  63. Sousa AF, Fonseca AC, Serra AC, Freire CSR, Silvestre AJD, Coelho JFJ (2016) New unsaturated copolyesters based on 2, 5-furandicarboxylic acid and their crosslinked derivatives. Polym 7:1049–1058. https://doi.org/10.1039/C5PY01702E

    Article  Google Scholar 

  64. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chemie Int Ed 54:3210–3215. https://doi.org/10.1002/anie.201410770

    Article  Google Scholar 

  65. Jacquel N, Saint-Loup R, Pascault JP, Rousseau A, Fenouillot F (2015) Bio-based alternatives in the synthesis of aliphatic–aromatic polyesters dedicated to biodegradable film applications. Polymer 59:234–242. https://doi.org/10.1016/j.polymer.2014.12.021

    Article  Google Scholar 

  66. Jiang L, Gonzalez-Diaz A, Ling-Chin J, Malik A, Roskilly AP, Smallbone AJ (2020) PEF plastic synthesized from industrial carbon dioxide and biowaste. Nat Sustain 3:761–767. https://doi.org/10.1038/s41893-020-0549-y

    Article  Google Scholar 

  67. Zia KM, Noreen A, Zuber M, Tabasum S, Mujahid M (2016) Recent developments and future prospects on bio-based polyesters derived from renewable resources: a review. Int J Biol Macromol 82:1028–1040. https://doi.org/10.1016/j.ijbiomac.2015.10.040

    Article  Google Scholar 

  68. Florence A, Carus M and the nova bio-based expert group, Nova Institute, Germany (2017) European bioplastics, Bio-based building blocks and polymers, Global capacities and trends 2016–2021. http://biobased.eu/media/edd/2017/02/17-02-20-Bio-based-Building-Blocks-and-Polymers-preview.pdf

  69. Kolybaba M, Tabil LG, Panigrahi S, Crerar WJ, Powell T, Wang B (2003) Biodegradable Polymers: Past, Present, and Future. CSAE/ASAE Annual Intersectional Meeting, 2003

  70. Awoyera PO, Adesina A (2020) Plastic wastes to construction products: status, limitations and future perspective. Case Studies in Construction Materials 12:e00330–e00340. https://doi.org/10.1016/j.cscm.2020.e00330

    Article  Google Scholar 

  71. https://www.grandviewresearch.com/industry-analysis/fdca-industry

  72. Bourdet A, Esposito A, Thiyagarajan S, Delbreilh L, Affouard F, Knoop RJI, Dargent E (2018) Molecular mobility in amorphous biobased poly (ethylene 2, 5-furandicarboxylate) and poly (ethylene 2, 4-furandicarboxylate). Macromolecules 51:1937–1945. https://doi.org/10.1021/acs.macromol.8b00108

    Article  Google Scholar 

  73. Maini L, Gigli M, Gazzano M, Lotti N, Bikiaris DN, Papageorgiou GZ (2018) Structural investigation of poly (ethylene furanoate) polymorphs. Polymers 10:296–304. https://doi.org/10.3390/polym10030296

    Article  Google Scholar 

  74. Mao Y, Zavalij PY (2018) Two furan-2, 5-dicarboxylic acid solvates crystallized from dimethylformamide and dimethyl sulfoxide. Acta Crystallogr Sect C Struct Chem 74:986–990. https://doi.org/10.1107/S2053229618010471

    Article  Google Scholar 

  75. Burgess SK, Leisen JE, Kraftschik BE, Mubarak CR, Kriegel RM, Koros WJ (2014) Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47(4):1383–1391. https://doi.org/10.1021/ma5000199

    Article  Google Scholar 

  76. Morales-Huerta JC, Martínez de Ilarduya A, Muñoz-Guerra S (2016) Poly(alkylene 2,5-furandicarboxylate)s (PEF and PBF) by ring opening polymerization. Polymer 87:148–158. https://doi.org/10.1016/j.polymer.2016.02.003

    Article  Google Scholar 

  77. Joshi AS, Alipourasiabi N, Kim Y-W, Coleman MR, Lawrence JG (2018) Role of enhanced solubility in esterification of 2,5-furandicarboxylic acid with ethylene glycol at reduced temperatures: energy efficient synthesis of poly(ethylene 2,5-furandicarboxylate). React Chem Eng 3:447–453. https://doi.org/10.1039/C8RE00086G

    Article  Google Scholar 

  78. **e H, Wu L, Li B-G, Dubois P (2019) Modification of poly(ethylene 2,5-furandicarboxylate) with Biobased 1,5-Pentanediol: significantly toughened copolyesters retaining high tensile strength and O2 barrier property. Biomacromol 20(1):353–364. https://doi.org/10.1021/acs.biomac.8b01495

    Article  Google Scholar 

  79. Papadopoulos L, Zamboulis A, Kasmi N, Wahbi M, Nannou C, Lambropoulou DA, Kostoglou M, Papageorgiou GZ, Bikiaris DN (2021) Investigation of the catalytic activity and reaction kinetic modeling of two antimony catalysts in the synthesis of poly(ethylene furanoate). Green Chem 23:2507–2524. https://doi.org/10.1039/D0GC04254D

    Article  Google Scholar 

  80. Kluge M, Pérocheau Arnaud S, Robert T (2019) 1,3-Propanediol and its application in bio-based polyesters for resin applications. Chem Africa 2:215–221. https://doi.org/10.1007/s42250-018-0026-4

    Article  Google Scholar 

  81. Wang J, Sun L, Shen Z, Zhu J, Song X, Liu X (2019) Effects of various 1,3-propanediols on the properties of poly(propylene furandicarboxylate). ACS Sustain Chem Eng 7:3282–3291. https://doi.org/10.1021/acssuschemeng.8b05288

    Article  Google Scholar 

  82. van der Klis F, Knoop RJI, Bitter JH, van den Broek LAM (2018) The effect of me-substituents of 1,4-butanediol analogues on the thermal properties of biobased polyesters. J Polym Sci Part A Polym Chem 56:1–4. https://doi.org/10.1002/pola.29074

    Article  Google Scholar 

  83. Zhang J, Liang Q, **e W, Peng L, He L, He Z, Chowdhury SP, Christensen R, Ni Y (2019) An eco-friendly method to get a bio-based dicarboxylic acid monomer 2,5-furandicarboxylic acid and its application in the synthesis of poly(hexylene 2,5-furandicarboxylate) (PHF). Polymers 11:197–210. https://doi.org/10.3390/polym11020197

    Article  Google Scholar 

  84. Wang G, Jiang M, Zhang Q, Wang R, Liang Q, Zhou G (2019) New bio-based copolyesters derived from 1,4-butanediol, terephthalic acid and 2,5-thiophenedicarboxylic acid: synthesis, crystallization behavior, thermal and mechanical properties. Polym Test 75:213–219. https://doi.org/10.1016/j.polymertesting.2019.02.020

    Article  Google Scholar 

  85. Kim T, Koo JM, Ryu MH, Jeon H, Kim S-M, Park S-A, Oh DX, Park J, Hwang SY (2017) Sustainable terpolyester of high Tg based on bio heterocyclic monomer of dimethyl furan-2,5-dicarboxylate and isosorbide. Polymer 132:122–132. https://doi.org/10.1016/j.polymer.2017.10.052

    Article  Google Scholar 

  86. Terzopoulou Z, Kasmi N, Tsanaktsis V, Doulakas N, Bikiaris DN, Achilias DS, Papageorgiou GZ (2017) Synthesis and characterization of bio-based polyesters: poly (2-methyl-1, 3-propylene-2, 5-furanoate), poly (isosorbide-2, 5-furanoate), poly (1, 4-cyclohexanedimethylene-2, 5-furanoate). Materials 10:801–819. https://doi.org/10.3390/ma10070801

    Article  Google Scholar 

  87. Kasmi N, Ainali NM, Agapiou E, Papadopoulos L, Papageorgiou GZ, Bikiaris DN (2019) Novel high Tg fully biobased poly(hexamethylene-co-isosorbide-2,5-furan dicarboxylate) copolyesters: synergistic effect of isosorbide insertion on thermal performance enhancement. Polym Degrad Stab 169:108983–108996. https://doi.org/10.1016/j.polymdegradstab.2019.108983

    Article  Google Scholar 

  88. Wang X, Wang Q, Liu S, Sun T, Wang G (2020) Synthesis and properties of poly(isosorbide 2,5-furandicarboxylate-co-ε-caprolactone) copolyesters. Polym Test 81:106284–106289. https://doi.org/10.1016/j.polymertesting.2019.106284

    Article  Google Scholar 

  89. Wang X, Wang Q, Liu S, Wang G (2019) Synthesis and characterization of poly(isosorbide-co-butylene 2,5-furandicarboxylate) copolyesters. Eur Polym J 115:70–75. https://doi.org/10.1016/j.eurpolymj.2019.03.025

    Article  Google Scholar 

  90. Gomes FW, Lima RC, Piombini CR, Sinfitele JF Jr, de Souza Jr. FG, Coutinho PLA, Pinto JC, (2018) Comparative Analyses of Poly (ethylene 2, 5-furandicarboxylate)− PEF− and Poly (ethylene terephthalate)− PET− Resins and Production Processes. Macromol Symp 381:1800129–1800138. https://doi.org/10.1002/masy.201800129

    Article  Google Scholar 

  91. Papageorgiou GZ, Papageorgiou DG, Terzopoulou Z, Bikiaris DN (2016) Production of bio-based 2, 5-furan dicarboxylate polyesters: recent progress and critical aspects in their synthesis and thermal properties. Eur Polym J 83:202–229. https://doi.org/10.1016/j.eurpolymj.2016.08.004

    Article  Google Scholar 

  92. Papageorgiou DG, Guigo N, Tsanaktsis V, Exarhopoulos S, Bikiaris DN, Sbirrazzuoli N, Papageorgiou Z (2016) Fast crystallization and melting behavior of a long-spaced aliphatic furandicarboxylate biobased polyester, poly (dodecylene 2, 5-furanoate). Ind Eng Chem Res 55:5315–5326. https://doi.org/10.1021/acs.iecr.6b00811

    Article  Google Scholar 

  93. Wu J, **e H, Wu L, Li B-G, Dubois P (2016) DBU-catalyzed biobased poly(ethylene 2,5-furandicarboxylate) polyester with rapid melt crystallization: synthesis, crystallization kinetics and melting behavior. RSC Adv 6:101578–101586. https://doi.org/10.1039/C6RA21135F

    Article  Google Scholar 

  94. Kasmi N, Majdoub M, Papageorgiou GZ, Achilias DS, Bikiaris DN (2017) Solid-State Polymerization of Poly(ethylene furanoate) Biobased Polyester, I: Effect of Catalyst Type on Molecular Weight Increase. Polymers 9:607–627. https://doi.org/10.3390/polym9110607

    Article  Google Scholar 

  95. Rosenboom JG, Hohl DK, Fleckenstein P, Storti G, Morbidelli M (2018) Bottle-grade polyethylene furanoate from ringopening polymerisation of cyclic oligomers. Nat Commun 9:2701–2706. https://doi.org/10.1038/s41467-018-05147-y

    Article  Google Scholar 

  96. Jiang Y, Woortman AJJ, Alberda van Ekenstein GOR, Loos K (2015) A biocatalytic approach towards sustainable furanic–aliphatic polyesters. Polym Chem 6:5198–5211. https://doi.org/10.1039/C5PY00629E

    Article  Google Scholar 

  97. Pellis A, Acero EH, Ferrario V, Ribitsch D, Guebitz GM, Gardossi L (2016) The closure of the cycle: enzymatic synthesis and functionalization of bio-based polyesters. Trends Biotechnol 34:316–328. https://doi.org/10.1016/j.tibtech.2015.12.009

    Article  Google Scholar 

  98. Maniar D, Hohmann KF, Jiang Y, Woortman AJJ, van Dijken J, Loos K (2018) Enzymatic Polymerization of Dimethyl 2,5-Furandicarboxylate and Heteroatom Diamines. ACS Omega 3:7077–7085. https://doi.org/10.1021/acsomega.8b01106

    Article  Google Scholar 

  99. Skoczinski P, Cangahuala MK, Maniar D, Albach RW, Bittner N, Loos K (2020) Biocatalytic Synthesis of Furan-Based Oligomer Diols with Enhanced End-Group Fidelity. ACS Sustain Chem Eng 8:1068–1086. https://doi.org/10.1021/acssuschemeng.9b05874

    Article  Google Scholar 

  100. Qu XL, Jiang M, Wang B, Deng J, Wang R, Zhang Q, Zhou G-y, Tang J (2019) A brønsted acidic ionic liquid as an efficient and selective catalyst system for bioderived High Molecular Weight Poly (ethylene 2, 5-furandicarboxylate). Chemsuschem 12:4927–4935. https://doi.org/10.1002/cssc.201902020

    Article  Google Scholar 

  101. Bhattacharjee D, Sehanobish K (2017) FDCA-based polyesters made with isosorbide, Patent US 9,580,542 B2

  102. Bhattacharjee D, Jenkins SR, Sehanobish K (2015) Multilayer films of FDCA-based polyesters. Patent US 9,969,150 B2

  103. Hong S, Min KD, Nam BU, Park OO (2016) High molecular weight bio furan-based co-polyesters for food packaging applications: synthesis, characterization and solid-state polymerization. Green Chem 18:5142–5150. https://doi.org/10.1039/C6GC01060A

    Article  Google Scholar 

  104. Gopalakrishnan P, Narayan-Sarathy S, Ghosh T, Mahajan K, Belgacem MN (2014) Synthesis and characterization of bio-based furanic polyesters. J Polym Res 21:340–348. https://doi.org/10.1007/s10965-013-0340-0

    Article  Google Scholar 

  105. Wang J, Liu X, Jia Z, Liu Y, Sun L, Zhu J (2017) Synthesis of bio-based poly (ethylene 2, 5-furandicarboxylate) copolyesters: higher glass transition temperature, better transparency, and good barrier properties. J Polym Sci Part A Polym Chem 55:3298–3307. https://doi.org/10.1002/pola.28706

    Article  Google Scholar 

  106. Wang J, Liu X, Jia Z, Sun L, Zhu J (2018) Highly crystalline polyesters synthesized from furandicarboxylic acid (FDCA): potential bio-based engineering plastic. Eur Polym J 109:379–390. https://doi.org/10.1016/j.eurpolymj.2018.10.014

    Article  Google Scholar 

  107. Lotti N, Munari A, Gigli M, Gazzano M, Tsanaktsis V, Bikiaris DN, Papageorgiou GZ (2016) Thermal and structural response of in situ prepared biobased poly(ethylene 2,5-furan dicarboxylate) nanocomposites. Polymer 103:288–298. https://doi.org/10.1016/j.polymer.2016.09.050

    Article  Google Scholar 

  108. Kainulainen TP, Erkkila P, Hukka TI, Sirvio JA, Heiskanen JP (2020) Application of Furan-Based Dicarboxylic Acids in Bio-Derived Dimethacrylate Resins. ACS Appl Polym Mater 2:3215–3225. https://doi.org/10.1021/acsapm.0c00367

    Article  Google Scholar 

  109. Genovese L, Lotti N, Siracusa V, Munari A (2017) Poly(neopentyl glycol furanoate): a member of the furan-based polyester family with smart barrier performances for sustainable food packaging applications. Materials 10:1028–1042. https://doi.org/10.3390/ma10091028

    Article  Google Scholar 

  110. Guidotti G, Soccio M, Lotti N, Gazzano M, Siracusa V, Munari A (2018) Poly(propylene 2,5-thiophenedicarboxylate) vs. Poly(propylene 2,5-furandicarboxylate): two examples of high gas barrier bio-based polyesters. Polymers 10:785–798. https://doi.org/10.3390/polym10070785

    Article  Google Scholar 

  111. Soccio M, Costa M, Lotti N, Gazzano M, Siracusa V, Salatelli E, Manaresi P, Munari A (2016) Novel fully biobased poly(butylene 2,5-furanoate/diglycolate) copolymers containing ether linkages: structure-property relationships. Eur Polymer J 81:397–412. https://doi.org/10.1016/j.eurpolymj.2016.06.022

    Article  Google Scholar 

  112. Paszkiewicz S, Irska I, Piesowicz E (2020) Environmentally friendly polymer blends based on post-consumer glycol-modified poly (ethylene terephthalate)(PET-G) foils and poly (ethylene 2, 5-Furanoate)(PEF): preparation and characterization. Materials 13:2673. https://doi.org/10.3390/ma13122673

    Article  Google Scholar 

  113. Ahmed AM, Kainulainen TP, Heiskanen JP (2021) Furfural-Based Modification of PET for UV-Blocking Copolymers with Decreased Oxygen Permeability. Ind Eng Chem Res 60:7495–7504. https://doi.org/10.1021/acs.iecr.1c00629

    Article  Google Scholar 

  114. Martino L, Niknam V, Guigo N, van Berkel JG, Sbirrazzuoli N (2016) Morphology and thermal properties of novel clay-based poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites. RSC Adv 6:59800–59807. https://doi.org/10.1039/C6RA09114H

    Article  Google Scholar 

  115. Martino L, Guigo N, van Berkel JG, Sbirrazzuoli N (2017) Influence of organically modified montmorillonite and sepiolite clays on the physical properties of bio-based poly(ethylene 2,5-furandicarboxylate). Compos Part B Eng 110:96–105. https://doi.org/10.1016/j.compositesb.2016.11.008

    Article  Google Scholar 

  116. Lam JY, Shih CC, Lee WY, Chueh C-C, Jang G-W, Huang C-J, Tung S-H, Chen W-C (2018) Bio-based transparent conductive film consisting of polyethylene furanoate and silver nanowires for flexible optoelectronic devices. Macromol Rapid Commun 39:1800271–1800275. https://doi.org/10.1002/marc.201800271

    Article  Google Scholar 

  117. **e H, Meng H, Wu L, Li B-G, Dubois P (2019) In-situ synthesis, thermal and mechanical properties of biobased poly(ethylene 2,5-furandicarboxylate)/montmorillonite (PEF/MMT) nanocomposites. Eur Polym J 121:109266–109272. https://doi.org/10.1016/j.eurpolymj.2019.109266

    Article  Google Scholar 

  118. Banella MB, Bonucci J, Vannini M, Marchese P, Lorenzetti C, Celli A (2019) Insights into the synthesis of poly (ethylene 2, 5-furandicarboxylate) from 2, 5-furandicarboxylic acid: steps toward environmental and food safety excellence in packaging applications. Ind Eng Chem Res 58:8955–8962. https://doi.org/10.1021/acs.iecr.9b00661

    Article  Google Scholar 

  119. Poulat F, Reutenauer P (2015) Method of making a bottle made of FDCA & diol monomers & apparatus for implementing such method. Patent US2015/0336320 A1

  120. Nasirudeen MB, Hailes HC, Evans JRG (2018) Production of hydrophobic polymers from bio-based resources. Fuw Trends Sci Technol J 3:336–341

    Google Scholar 

  121. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 107:367–392. https://doi.org/10.1016/j.addr.2016.06.012

    Article  Google Scholar 

  122. Wang P, Arza CR, Zhang B (2018) Indole as a new sustainable aromatic unit for high quality biopolyesters. Polym Chem 9:4706–4710. https://doi.org/10.1039/C8PY00962G

    Article  Google Scholar 

  123. Jiang M, Liu Q, Zhang Q, Ye C, Zhou G (2012) A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. J Polym Sci A Polym Chem 50:1026–1036. https://doi.org/10.1002/pola.25859

    Article  Google Scholar 

  124. Pfister D, Storti G, Tancini F, Costa LI, Morbidelli M (2015) Synthesis and ring-opening polymerization of cycle butylene 2,5-furandicarboxylate. Macromol Chem Phys 216(21):2141–2146. https://doi.org/10.1002/macp.201500297

    Article  Google Scholar 

  125. Tsanaktsis V, Terzopoulou Z, Nerantzaki M, Papageorgiou GZ, Bikiaris DN (2016) New poly(pentylene furanoate) and poly(heptylene furanoate) sustainable polyesters from diols with odd methylene groups. Mater Lett 178:64–67. https://doi.org/10.1016/j.matlet.2016.04.183

    Article  Google Scholar 

  126. Papageorgiou GZ, Guigo N, Tsanaktsis V, Papageorgiou DG, Exarhopoulos S, Sbirrazzuoli N, Bikiaris DN (2015) On the bio-based furanic polyesters: synthesis and thermal behavior study of poly(octylene furanoate) using fast and temperature modulated scanning calorimetry. Eur Polym J 68:115–127. https://doi.org/10.1016/j.eurpolymj.2015.04.011

    Article  Google Scholar 

  127. Tsanaktsis V, Bikiaris DN, Guigo N, Exarhopoulos S, Papageorgiou DG, Sbirrazzuoli N, Papageorgiou GZ (2015) Synthesis, properties and thermal behavior of poly(decylene-2,5-furanoate): a biobased polyester from 2,5-furan dicarboxylic acid. RSC Adv 5:74592–74604. https://doi.org/10.1039/C5RA13324F

    Article  Google Scholar 

  128. Fehrenbacher U, Grosshardt O, Kowollik K, Tübke B, Dingenouts N, Wilhelm M (2009) Synthese und Charakterisierung von Polyestern und Polyamiden auf der Basis von Furan-2,5-dicarbonsäure. Chem Ing Tech 81(11):1829–1835. https://doi.org/10.1002/cite.200900090

    Article  Google Scholar 

  129. de Jong E, Dam MA, Sipos L, Gruter G-JM (2012) Furandicarboxylic Acid (FDCA), A Versatile Building Block for a Very Interesting Class of Polyesters, © 2012 American Chemical Society, Smith and Gross; Biobased Monomers, Polymers, and Materials, ACS Symposium Series; American Chemical Society: Washington, DC, Chapter 1, p 1–13. https://doi.org/10.1021/bk-2012-1105.ch001

  130. Papageorgiou GZ, Papageorgiou DG, Tsanaktsis V, Bikiaris DN (2015) Synthesis of the bio-based polyester poly (propylene 2, 5-furan dicarboxylate). Comparison of thermal behavior and solid state structure with its terephthalate and naphthalate homologues. Polymer 62:28–38. https://doi.org/10.1016/j.polymer.2015.01.080

    Article  Google Scholar 

  131. Vannini M, Marchese P, Celli A, Lorenzetti C (2015) Fully biobased poly(propylene 2,5-furandicarboxylate) for packaging applications: excellent barrier properties as a function of crystallinity. Green Chem 17:4162–4166. https://doi.org/10.1039/C5GC00991J

    Article  Google Scholar 

  132. Park SA, Choi J, Ju S, Jegal J, Lee KM, Hwang SY, Oh DX, Park J (2017) Copolycarbonates of bio-based rigid isosorbide and flexible 1, 4-cyclohexanedimethanol: Merits over bisphenol-A based polycarbonates. Polymer 116:153–159. https://doi.org/10.1016/j.polymer.2017.03.077

    Article  Google Scholar 

  133. Paszkiewicz S, Szymczyk A, Pawlikowska D, Irska I, Taraghi I, Pilawka R, Gu J, Li X, Tu Y, Piesowicz E (2017) Synthesis and characterization of poly(ethylene terephthalate-co-1,4-cyclohexanedimethylene terephtlatate)-block-poly(tetramethylene oxide) copolymers. RSC Adv 7:41745–41754. https://doi.org/10.1039/C7RA07172H

    Article  Google Scholar 

  134. Wang J, Liu X, Zhang Y, Liu F, Zhu J (2016) Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: influence of composition on mechanical and barrier properties. Polymer 103:1–8. https://doi.org/10.1016/j.polymer.2016.09.030

    Article  Google Scholar 

  135. Iyer KA (2017) Chain mobility, secondary relaxation, and oxygen transport in terephthalate copolyesters with rigid and flexible cyclic diols. Polymer 129:117–126. https://doi.org/10.1016/j.polymer.2017.09.049

    Article  Google Scholar 

  136. Mao Y, Kriegel RM, Bucknall DG (2016) The crystal structure of poly (ethylene furanoate). Polymer 102:308–314. https://doi.org/10.1016/j.polymer.2016.08.052

    Article  Google Scholar 

  137. Kazaryan LG, Medvedeva FM (1968) X-ray study of poly (ethylene furan-2, 5-dicarboxylate) structure. Vysok Soedin Ser B Kratk Soobshcheniya 10:305–306

  138. Codou A, Moncel M, van Berkel JG, Guigo N, Sbirrazzuoli N (2016) Glass transition dynamics and cooperativity length of poly (ethylene 2, 5-furandicarboxylate) compared to poly (ethylene terephthalate). Phys Chem Chem Phys 18:16647–16658. https://doi.org/10.1039/C6CP01227B

    Article  Google Scholar 

  139. Thiyagarajan S, Vogelzang W, Knoop RJI, Frissen AE, van Haveren J, van Es DS (2014) Biobased furandicarboxylic acids (FDCAs): effects of isomeric substitution on polyester synthesis and properties. Green Chem 16:1957–1966. https://doi.org/10.1039/C3GC42184H

    Article  Google Scholar 

  140. Thiyagarajan S, Meijlink MA, Bourdet A, Vogelzang W, Knoop RJI, Esposito A, Dargent E, van Es DS, van Haveren J (2019) Synthesis and thermal properties of bio-based copolyesters from the mixtures of 2, 5-and 2, 4-furandicarboxylic acid with different diols. ACS Sustain Chem Eng 7:18505–18516. https://doi.org/10.1021/acssuschemeng.9b04463

    Article  Google Scholar 

  141. Ryu YS, Oh KW, Kim SH (2016) Synthesis and characterization of a furan-based self-healing polymer. Macromol Res 24:874–880. https://doi.org/10.1007/s13233-016-4122-5

    Article  Google Scholar 

  142. Eerhart AJJE, Faaij APC, Patel MK (2012) Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ Sci 5:6407–6422. https://doi.org/10.1039/C2EE02480B

    Article  Google Scholar 

  143. Grigore ME (2017) Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2:24–34. https://doi.org/10.3390/recycling2040024

    Article  Google Scholar 

  144. Kucherov FA, Gordeev EG, Kashin AS, Ananikov VP (2017) Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing. Angew Chemie Int Ed 56:15931–15935. https://doi.org/10.1002/anie.201708528

    Article  Google Scholar 

  145. Pellis A, Haernvall K, Pichler CM, Ghazaryan G, Breinbauer R, Guebitz GM (2016) Enzymatic hydrolysis of poly (ethylene furanoate). J Biotechnol 235:47–53. https://doi.org/10.1016/j.jbiotec.2016.02.006

    Article  Google Scholar 

  146. Weinberger S, Canadell J, Quartinello F, Yeniad B, Arias A, Pellis A, Guebitz GM (2017) Enzymatic degradation of poly (ethylene 2, 5-furanoate) powders and amorphous films. Catalysts 7:318–329. https://doi.org/10.3390/catal7110318

    Article  Google Scholar 

  147. Weinberger S, Haernvall K, Scaini D, Ghazaryan G, Zumstein MT, Sander M, Pellis A, Guebitz GM (2017) Enzymatic surface hydrolysis of poly (ethylene furanoate) thin films of various crystallinities. Green Chem 19:5381–5384. https://doi.org/10.1039/C7GC02905E

    Article  Google Scholar 

  148. Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, Dominick G, Duman R, Omari KE, Mykhaylyk V, Wagner A, Michener WE, Amore A, Skaf MS, Crowley MF, Thorne AW, Johnson CW, Woodcock HL, McGeehan JE, Beckham GT (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci 115:E4350–E4357. https://doi.org/10.1073/pnas.1718804115

    Article  Google Scholar 

  149. Avantium (2019) Annual Report 2019. https://www.avantium.com/wp-content/uploads/2020/03/20200325-Avantium-Annual-Report-2019.pdf

  150. Terzopoulou Z, Tsanaktsis V, Nerantzaki M, Achilias DS, Vaimakis T, Papageorgiou GZ, Bikiaris DN (2016) Thermal degradation of biobased polyesters: kinetics and decomposition mechanism of polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic diols. J Anal Appl Pyrolysis 117:162–175. https://doi.org/10.1016/j.jaap.2015.11.016

    Article  Google Scholar 

  151. Terzopoulou Z, Tsanaktsis V, Bikiaris DN, Exarhopoulos S, Papageorgiou DG, Papageorgiou GZ (2016) Biobased poly(ethylene furanoate-co-ethylene succinate) copolyesters: solid state structure, melting point depression and biodegradability. RSC Adv 6:84003–84015. https://doi.org/10.1039/C6RA15994J

    Article  Google Scholar 

  152. Soares MJ, Dannecker PK, Vilela C, Bastos J, Meier MAR, Sousa AF (2017) Poly(1,20-eicosanediyl 2,5-furandicarboxylate), a biodegradable polyester from renewable resources. Eur Polym J 90:301–311. https://doi.org/10.1016/j.eurpolymj.2017.03.023

    Article  Google Scholar 

  153. Papadopoulos L, Magaziotis A, Nerantzaki M, Terzopoulou Z, Papageorgiou GZ, Bikiaris DN (2018) Synthesis and characterization of novel poly(ethylene furanoate-co-adipate) random copolyesters with enhanced biodegradability. Polym Degrad Stab 156:32–42. https://doi.org/10.1016/j.polymdegradstab.2018.08.002

    Article  Google Scholar 

  154. Kim H, Lee S, Ahn Y, Lee J, Won W (2020) Sustainable Production of Bioplastics from Lignocellulosic Biomass: Technoeconomic Analysis and Life-Cycle Assessment. ACS Sustainable Chem Eng 8:12419–12429. https://doi.org/10.1021/acssuschemeng.0c02872

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Petroleum and Energy Studies, Dehradun, DIT University, Dehradun, and Liaocheng University, China for supporting this work. We also thank the anonymous reviewers for their valuable comments, which helped us to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Shailey Singhal prepared the whole manuscript. Manash Protim Mudoi and Shilpi Agarwal supported in creating the schemes, figures, and referencing it. Naveen Singhal and Ragini Singh assisted in formatting and providing final shape to the manuscript.

Corresponding author

Correspondence to Manash Protim Mudoi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article, the incorrect version of Schemes 3 and 7 were used. Also, in the list of Abbreviations, an incorrect bracket must be removed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, S., Agarwal, S., Mudoi, M.P. et al. Chemical conversion of furan dicarboxylic acid to environmentally benign polyesters: an overview. Biomass Conv. Bioref. 13, 15619–15636 (2023). https://doi.org/10.1007/s13399-021-01871-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01871-6

Keywords

Navigation