Log in

Prediction of higher heating value of biochars using proximate analysis by artificial neural network

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The biochars obtained from the pyrolysis of biomass at different conditions have the potential to be used as biofuels. Thus, as a critical fuel property, the higher heating value (HHV) of biochars must be determined to decide on their application area. However, oxygen bomb calorimeters that are employed for HHV determination are expensive. Also, analysis is time-consuming, needs specialists, and can suffer from experimental errors. Although some model equations are available for solid fuels (biomass, coal, etc.) to calculate HHV, biochar has different properties, and a new model is required. This study aims to form an artificial neural network (ANN) model in order to estimate HHV of biochars by using simple proximate analysis data of 129 different biochars. The experimental and the predicted model results showed good agreement that the ANN model presented the highest regression coefficient of 0.9651 and the lowest mean absolute deviation of 0.5569 among all models previously reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Available for data transparency

Code availability

With software application or custom code

Abbreviations

A:

Ash

ANNs:

Artificial neural networks

FC:

Fixed carbon

HHV:

Higher heating value

MAD:

Median absolute deviation

MAPE:

Mean absolute percentage error

MSE:

Mean square error

RMSE:

Root mean square error

VM:

Volatile matter

b 1, i :

Bias of a neuron N in the hidden layer

IW M, N :

Weight of an input M on a hidden N

N train :

Number of training samples

wt%:

Weight percent

W N, Z :

Weight of hidden neuron N on an output neuron Z

y Act, i :

Actual values for the outcome

y prd, I :

Predicted values for the outcome

y m :

Mean of actual values for the outcome

Z(n):

Calculated values of the output neurons

References

  1. Hossain MS, Islam MR, Rahman MS, Kader MA, Haniu H (2017) Biofuel from co-pyrolysis of solid tire waste and rice husk. Energy Procedia 110:453–458. https://doi.org/10.1016/j.egypro.2017.03.168

    Article  CAS  Google Scholar 

  2. Xu L, Jiang Y, Qiu R (2018) Parametric study and global sensitivity analysis for co-pyrolysis of rape straw and waste tire via variance-based decomposition. Bioresour Technol 247:545–552. https://doi.org/10.1016/j.biortech.2017.09.141

    Article  CAS  PubMed  Google Scholar 

  3. Cardoso CR, Miranda MR, Santos KG, Ataíde CH (2011) Determination of kinetic parameters and analytical pyrolysis of tobacco waste and sorghum bagasse. J Anal Appl Pyrolysis 92:392–400. https://doi.org/10.1016/j.jaap.2011.07.013

    Article  CAS  Google Scholar 

  4. Czajczyńska D, Krzyżyńska R, Jouhara H, Spencer N (2017) Use of pyrolytic gas from waste tire as a fuel: a review. Energy 134:1121–1131. https://doi.org/10.1016/j.energy.2017.05.042

    Article  CAS  Google Scholar 

  5. Shakya R, Adhikari S, Mahadevan R, Hassan EB, Dempster TA (2018) Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp. Bioresour Technol 252:28–36. https://doi.org/10.1016/j.biortech.2017.12.067

    Article  CAS  PubMed  Google Scholar 

  6. Shakya A, Agarwal T (2019) Removal of Cr (VI) from water using pineapple peel derived biochars: adsorption potential and re-usability assessment. J Mol Liq 293:111497. https://doi.org/10.1016/j.molliq.2019.111497

    Article  CAS  Google Scholar 

  7. Ye S, Zeng G, Wu H, Liang J, Zhang C, Dai J, **ong W, Song B, Wu S, Yu J (2019) The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resour Conserv Recycl 140:278–285. https://doi.org/10.1016/j.resconrec.2018.10.004

    Article  Google Scholar 

  8. Gupta GK, Mondal MK (2020) Mechanism of Cr (VI) uptake onto sagwan sawdust derived biochar and statistical optimization via response surface methodology. Biomass Convers Biorefinery:1–17. https://doi.org/10.1007/s13399-020-01082-5

  9. Creamer AE, Zhang M (2014) Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. https://doi.org/10.1016/j.cej.2014.03.105

  10. Zhang C, Zhang Z, Zhang L, Li Q, Li C, Chen G, Zhang S, Liu Q, Hu X (2020) Evolution of the functionalities and structures of biochar in pyrolysis of poplar in a wide temperature range. Bioresour Technol:123002. https://doi.org/10.1016/j.biortech.2020.123002

  11. Stella Mary G, Sugumaran P, Niveditha S, Ramalakshmi B, Ravichandran P, Seshadri S (2016) Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int J Recycl Org Waste Agric 5:43–53. https://doi.org/10.1007/s40093-016-0116-8

    Article  Google Scholar 

  12. Dhar SA, Sakib TU, Hilary LN (2020) Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process. Biomass Convers Biorefinery:1–17. https://doi.org/10.1007/s13399-020-01116-y

  13. Lee M, Lin YL, Te Chiueh P, Den W (2020) Environmental and energy assessment of biomass residues to biochar as fuel: a brief review with recommendations for future bioenergy systems. J Clean Prod 251:119714

    Article  CAS  Google Scholar 

  14. Ceylan Z, Pekel E, Ceylan S, Bulkan S (2018) Biomass higher heating value prediction analysis by ANFIS, PSO-ANFIS and GA-ANFIS. Glob Nest J 20:589–597. https://doi.org/10.30955/gnj.002772

    Article  CAS  Google Scholar 

  15. Dashti A, Noushabadi AS, Raji M, Razmi A, Ceylan S, Mohammadi AH (2019) Estimation of biomass higher heating value (HHV) based on the proximate analysis: smart modeling and correlation. Fuel 257:115931. https://doi.org/10.1016/j.fuel.2019.115931

    Article  CAS  Google Scholar 

  16. Ceylan Z, Sungur B (2020) Estimation of coal elemental composition from proximate analysis using machine learning techniques. Energy Sources A Recover Util Environ Eff 42:2576–2592. https://doi.org/10.1080/15567036.2020.1790696

    Article  CAS  Google Scholar 

  17. Cordero T, Marquez F, Rodriguez-Mirasol J, Rodriguez J (2001) Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 80:1567–1571. https://doi.org/10.1016/S0016-2361(01)00034-5

    Article  CAS  Google Scholar 

  18. Hosseinpour S, Aghbashlo M, Tabatabaei M, Mehrpooya M (2017) Estimation of biomass higher heating value (HHV) based on the proximate analysis by using iterative neural network-adapted partial least squares (INNPLS). Energy 138:473–479. https://doi.org/10.1016/j.energy.2017.07.075

    Article  Google Scholar 

  19. Yin CY (2011) Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90(3):1128–1132

    Article  CAS  Google Scholar 

  20. Özyuǧuran A, Yaman S (2017) Prediction of calorific value of biomass from proximate analysis. In: Energy Procedia. pp 130–136

  21. Parikh J, Channiwala SA, Ghosal GK (2005) A correlation for calculating HHV from proximate analysis of solid fuels. Fuel 84:487–494. https://doi.org/10.1016/j.fuel.2004.10.010

    Article  CAS  Google Scholar 

  22. Petkovic D, Petković B, Biorefinery BK-BC and 2020 undefined. Appraisal of information system for evaluation of kinetic parameters of biomass oxidation. Springer

  23. Sun Y, Peng Y, Chen Y, Shukla AJ (2003) Application of artificial neural networks in the design of controlled release drug delivery systems. Adv Drug Deliv Rev 55:1201–1215. https://doi.org/10.1016/S0169-409X(03)00119-4

    Article  CAS  PubMed  Google Scholar 

  24. Petković B, Petković D, Kuzman B (2020) Adaptive neuro fuzzy predictive models of agricultural biomass standard entropy and chemical exergy based on principal component analysis. Springer. https://doi.org/10.1007/s13399-020-00767-1

  25. Darvishan A, Bakhshi H, Madadkhani M, Mir M, Bemani A (2018) Application of MLP-ANN as a novel predictive method for prediction of the higher heating value of biomass in terms of ultimate analysis. Energy Sources A Recover Util Environ Eff 40:2960–2966. https://doi.org/10.1080/15567036.2018.1514437

    Article  CAS  Google Scholar 

  26. Petković B, Petković D, … BK- … and E in 2020 undefined. Neuro-fuzzy estimation of reference crop evapotranspiration by neuro fuzzy logic based on weather conditions. Elsevier

  27. Wang JJ, Wang JZ, Zhang ZG, Guo SP (2012) Stock index forecasting based on a hybrid model. Omega 40:758–766. https://doi.org/10.1016/j.omega.2011.07.008

    Article  Google Scholar 

  28. Cai W, Kumar H, Huang S, Bordoloi S, Garg A, Lin P, Gopal P (2020) ANN model development for air permeability in biochar amended unsaturated soil. Geotech Geol Eng 38:1295–1309. https://doi.org/10.1007/s10706-019-01091-w

    Article  Google Scholar 

  29. Genuino DAD, Bataller BG, Capareda SC, De Luna MDG (2017) Application of artificial neural network in the modeling and optimization of humic acid extraction from municipal solid waste biochar. J Environ Chem Eng 5:4101–4107. https://doi.org/10.1016/j.jece.2017.07.071

    Article  CAS  Google Scholar 

  30. Lee KM, Zanil MF, Chan KK, Chin ZP, Liu YC, Lim S (2020) Synergistic ultrasound-assisted organosolv pretreatment of oil palm empty fruit bunches for enhanced enzymatic saccharification: an optimization study using artificial neural networks. Biomass Bioenergy 139:105621. https://doi.org/10.1016/j.biombioe.2020.105621

    Article  CAS  Google Scholar 

  31. Chakraborty V, Das P (2020) Synthesis of nano-silica-coated biochar from thermal conversion of sawdust and its application for Cr removal: kinetic modelling using linear and nonlinear method and modelling using artificial neural network analysis. Biomass Convers Biorefinery:1–11. https://doi.org/10.1007/s13399-020-01024-1

  32. Petković B, Petkovic D, Kuzman B, Jovanovic D (2020) E-monitoring of in vitro culture parameters for prediction of maximal biomass yields. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00986-6

  33. Barradas Filho AO, Barros AKD, Labidi S, Viegas IMA, Marques DB, Romariz ARS, de Sousa RM, Marques ALB, Marques EP (2015) Application of artificial neural networks to predict viscosity, iodine value and induction period of biodiesel focused on the study of oxidative stability. Fuel 145:127–135. https://doi.org/10.1016/j.fuel.2014.12.016

    Article  CAS  Google Scholar 

  34. Huang YF, Lo SL (2020) Predicting heating value of lignocellulosic biomass based on elemental analysis. Energy 191:116501. https://doi.org/10.1016/j.energy.2019.116501

    Article  CAS  Google Scholar 

  35. **ng J, Luo K, Wang H, Gao Z, Fan J (2019) A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches. Energy 188:116077. https://doi.org/10.1016/j.energy.2019.116077

    Article  Google Scholar 

  36. Qian C, Li Q, Zhang Z, Wang X, Hu J, Cao W (2020) Prediction of higher heating values of biochar from proximate and ultimate analysis. Fuel 265:116925. https://doi.org/10.1016/j.fuel.2019.116925

    Article  CAS  Google Scholar 

  37. Armynah B, Tahir D, Tandilayuk M, et al. (2019) Potentials of biochars derived from bamboo leaf biomass as energy sources: effect of temperature and time of heating. hindawi.com. https://doi.org/10.1155/2019/3526145

  38. Crombie K, Mašek O (2015) Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. GCB Bioenergy 7:349–361. https://doi.org/10.1111/gcbb.12137

    Article  CAS  Google Scholar 

  39. Nhuchhen DR, Afzal MT, Dreise T, Salema AA (2018) Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor. Biomass Bioenergy 119:293–303. https://doi.org/10.1016/j.biombioe.2018.09.035

    Article  CAS  Google Scholar 

  40. Wang K, Brown RC, Homsy S, Martinez L, Sidhu SS (2013) Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production. Bioresour Technol 127:494–499. https://doi.org/10.1016/j.biortech.2012.08.016

    Article  CAS  PubMed  Google Scholar 

  41. Tag AT, Duman G, Ucar S, Yanik J (2016) Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J Anal Appl Pyrolysis 120:200–206. https://doi.org/10.1016/j.jaap.2016.05.006

    Article  CAS  Google Scholar 

  42. Jafri N, Wong WY, Doshi V, Yoon LW, Cheah KH (2018) A review on production and characterization of biochars for application in direct carbon fuel cells. Process Saf Environ Prot 118:152–166

    Article  CAS  Google Scholar 

  43. Angin D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597. https://doi.org/10.1016/j.biortech.2012.10.150

    Article  CAS  PubMed  Google Scholar 

  44. Phyllis2 - ECN Phyllis classification. https://phyllis.nl/Browse/Standard/ECN-Phyllis. Accessed 17 Oct 2020

  45. Gupta MM, ** L, Homma N, Zadeh LA (2005) Static and dynamic neural networks: from fundamentals to advanced theory

  46. Principe JC, Xu D, Fisher III JW (2000) Information-theoretic learning

  47. Yildiz Z, Uzun H, Ceylan S, Topcu Y (2016) Application of artificial neural networks to co-combustion of hazelnut husk-lignite coal blends. Bioresour Technol 200:42–47. https://doi.org/10.1016/j.biortech.2015.09.114

    Article  CAS  PubMed  Google Scholar 

  48. Hosseinzadeh Samani B, Ansari Samani M, Shirneshan A et al (2019) Evaluation of an enhanced ultrasonic-assisted biodiesel synthesized using safflower oil in a diesel power generator. Biofuels:1–10. https://doi.org/10.1080/17597269.2019.1646542

  49. Nhuchhen DR, Abdul Salam P (2012) Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel 99:55–63. https://doi.org/10.1016/j.fuel.2012.04.015

    Article  CAS  Google Scholar 

  50. Malucelli LC, Silvestre GF, Carneiro J, Vasconcelos EC, Guiotoku M, Maia CMBF, Carvalho Filho MAS (2019) Biochar higher heating value estimative using thermogravimetric analysis. J Therm Anal Calorim 139:2215–2220. https://doi.org/10.1007/s10973-019-08597-8

    Article  CAS  Google Scholar 

  51. Sheng C, Azevedo JLT (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 28:499–507. https://doi.org/10.1016/j.biombioe.2004.11.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Gülce Çakman: investigation, writing—original draft; Saba Gheni: writing–reviewing and editing; Selim Ceylan: supervision, conceptualization, writing–reviewing, and editing.

Corresponding author

Correspondence to Selim Ceylan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakman, G., Gheni, S. & Ceylan, S. Prediction of higher heating value of biochars using proximate analysis by artificial neural network. Biomass Conv. Bioref. 14, 5989–5997 (2024). https://doi.org/10.1007/s13399-021-01358-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01358-4

Keywords

Navigation