Log in

Facets of diatom biology and their potential applications

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Diatoms are the reservoir of bioactive compounds which have immense application in nutrition, industrial commodities and ecological studies. In the oceans, diatoms form a large bloom of silica under favourable conditions, whereas, in lentic and lotic systems, they colonize according to seasonal disturbances. Notably, the survival of diatoms in a stressed environment is because of their uniqueness; therefore, diatoms serve as an ideal candidate to understand the evolutionary paradigm and successional dynamics. This review outlines the biological uniqueness of diatoms, their role in biogeochemical cycles and the recolonization pattern of diatoms in anthropic disturbed habitats. Furthermore, a detailed discussion on different technologies for extracting valuable biomolecules with an emphasis on lipid extraction has been carried out. Moreover, the diatom-based photosynthetic biorefinery approach for a better understanding of the renewable usage of biomass is done.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cavalier-Smith T (2018). Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. In Protoplasma (Vol. 255, Issue 1). Protoplasma. https://doi.org/10.1007/s00709-017-1147-3

  2. Mann DG, Droop SJM (1996) Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336:19–32. https://doi.org/10.1007/BF00010816

    Article  Google Scholar 

  3. Winter JG, Duthie HC (2000) Stream epilithic, epipelic and epiphytic diatoms: habitat fidelity and use in biomonitoring. Aquat Ecol 34(4):345–353. https://doi.org/10.1023/A:1011461727835

    Article  Google Scholar 

  4. Round FE, Crawford RM, Mann DG (1990) The diatoms. Biology and morphology of the genera. Cambridge University Press, Cambridge, 747 pp

    Google Scholar 

  5. Maeda Y, Nojima D, Yoshino T, Tanaka T (2017) Structure and properties of oil bodies in diatoms. Philos Trans Royal Soc B: Biological Sciences 372(1728):20160408. https://doi.org/10.1098/rstb.2016.0408

    Article  Google Scholar 

  6. di Visconte GS, Spicer A, Chuck CJ, Allen MJ (2019) The microalgae biorefinery: a perspective on the current status and future opportunities using genetic modification. Applied Sciences (Switzerland) 9(22). https://doi.org/10.3390/app9224793

  7. Enamala MK, Enamala S, Chavali M, Donepudi J, Yadavalli R, Kolapalli B, Aradhyula TV, Velpuri J, Kuppam C (2018) Production of biofuels from microalgae - a review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renew Sust Energ Rev 94(2018):49–68. https://doi.org/10.1016/j.rser.2018.05.012

    Article  Google Scholar 

  8. Foets J, Wetzel CE, Teuling AE, Pfister L (2020) Temporal and spatial variability of terrestrial diatoms at the catchment scale: controls on productivity and comparison with other soil algae. PeerJ 8:e9198. https://doi.org/10.7717/peerj.9198

    Article  Google Scholar 

  9. Branco-Vieira M, Martin SS, Agurto C, Freitas MAV, Martins AA, Mata TM, Caetano NS (2020) Biotechnological potential of Phaeodactylum tricornutum for biorefinery processes. Fuel 268(2020):117357

    Article  Google Scholar 

  10. Ozkan A, Rorrer GL (2017) Effects of light intensity on the selectivity of lipid and chitin nanofiber production during photobioreactor cultivation of the marine diatom Cyclotella sp. Algal Res 25(2017):216–227

    Article  Google Scholar 

  11. Yi Z, Su Y, Cherek P, Nelson DR, Lin J, Rolfsson O, Wu H, Salehi-Ashtiani K, Brynjolfsson S, Fu W (2019) Combined artifcial high-silicate medium and LED illumination promote carotenoid accumulation in the marine diatom Phaeodactylum tricornutum. Microbial Cell Factories 18:209. https://doi.org/10.1186/s12934-019-1263-1

    Article  Google Scholar 

  12. Bayu A, Rachman A, Noerdjito DR, Putra MY, Widayatno WB (2020) High-value chemicals from marine diatoms: a biorefinery approach. IOP Conference Series: Earth and Environmental Science 460(1). https://doi.org/10.1088/1755-1315/460/1/012012

  13. Kuczynska P, Jemiola-Rzeminska M, Strzalka K (2015) Photosynthetic pigments in diatoms. Marine Drugs 13(9):5847–5881. https://doi.org/10.3390/md13095847

    Article  Google Scholar 

  14. Fu W, Nelson DR, Yi Z, Xu M, Khraiwesh B, Jijakli K, Chaiboonchoe A, Alzahmi A, Al-Khairy D, Brynjolfsson S, Salehi-Ashtiani K (2017) Bioactive compounds from microalgae: current development and prospects. Stud Nat Prod Chem 54(November 2019):199–225. https://doi.org/10.1016/B978-0-444-63929-5.00006-1

    Article  Google Scholar 

  15. Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V (2015) Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Marine Drugs 13(10):6152–6209. https://doi.org/10.3390/md13106152

    Article  Google Scholar 

  16. Mimouni V, Ulmann L, Pasquet V, Mathieu M, Picot L, Bougaran G, Cadoret J-P, Morant-Manceau A, Schoefs B (2012) The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Curr Pharm Biotechnol 13(15):2733–2750. https://doi.org/10.2174/138920112804724828

    Article  Google Scholar 

  17. Leyland B, Boussiba S, Inna K-G (2020) A review of diatom lipid droplets. Biology 9(38):1–23. https://doi.org/10.3390/biology9020038

    Article  Google Scholar 

  18. Yi Z, Xu M, Di X, Brynjolfsson S, Fu W (2017). Exploring valuable lipids in diatoms. Frontiers in Marine Science, 4(JAN). https://doi.org/10.3389/fmars.2017.00017

  19. **a S, Gao B, Li A, **ong J, Ao Z, Zhang C (2014) Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Marine Drugs 12(9):4883–4897. https://doi.org/10.3390/md12094883

    Article  Google Scholar 

  20. Rodolfi L, Biondi N, Guccione A, Bassi N, D’Ottavio M, Arganaraz G, Tredici MR (2017) Oil and eicosapentaenoic acid production by the diatom Phaeodactylum tricornutum cultivated outdoors in Green Wall panel (GWP®) reactors. Biotechnol Bioeng 114(10):2204–2210. https://doi.org/10.1002/bit.26353

    Article  Google Scholar 

  21. Sayanova O, Mimouni V, Ulmann L, Morant-Manceau A, Pasquet V, Schoefs B, Napier JA (2017) Modulation of lipid biosynthesis by stress in diatoms. Philos Trans R Soc B: Biological Sciences 372(1728):20160407. https://doi.org/10.1098/rstb.2016.0407

    Article  Google Scholar 

  22. Adams LA, Essien ER, Adesalu AT, Julius ML (2017) Bioactive glass 45S5 from diatom biosilica. Journal of Science: Advanced Materials and Devices 2(4):476–482. https://doi.org/10.1016/j.jsamd.2017.09.002

    Article  Google Scholar 

  23. Terracciano M, De Stefano L, Rea I (2018) Diatoms green nanotechnology for biosilica-based drug delivery systems. Pharmaceutics 10(4):1–15. https://doi.org/10.3390/pharmaceutics10040242

    Article  Google Scholar 

  24. Sumper M, Kröger N (2004) Silica formation in diatoms: the function of long-chain polyamines and silaffins. J Mater Chem 14(14):2059–2065. https://doi.org/10.1039/b401028k

    Article  Google Scholar 

  25. Bridoux MC, Ingalls AE (2010) Structural identification of long-chain polyamines associated with diatom biosilica in a Southern Ocean sediment core. Geochim Cosmochim Acta 74(14):4044–4057. https://doi.org/10.1016/j.gca.2010.04.010

    Article  Google Scholar 

  26. Lin HY, Lin HJ (2019) Polyamines in microalgae: something borrowed, something new. Marine Drugs 17(1). https://doi.org/10.3390/md17010001

  27. Govindan N, Maniam GP, Yusoff MM, Mohd MH, Chatsungnoen T, Ramaraj R, Chisti Y (2020) Statistical optimization of lipid production by the diatom Gyrosigma sp. grown in industrial wastewater. J Appl Phycol 32(1):375–387. https://doi.org/10.1007/s10811-019-01971-x

    Article  Google Scholar 

  28. Marella TK, Datta A, Patil MD, Dixit S, Tiwari A (2019) Biodiesel production through algal cultivation in urban wastewater using algal floway. Bioresour Technol 280(December 2018):222–228. https://doi.org/10.1016/j.biortech.2019.02.031

    Article  Google Scholar 

  29. Marella TK, Parine NR, Tiwari A (2018) Potential of diatom consortium developed by nutrient enrichment for biodiesel production and simultaneous nutrient removal from waste water. Saudi J Biol Sci 25(4):704–709. https://doi.org/10.1016/j.sjbs.2017.05.011

    Article  Google Scholar 

  30. Bozarth A, Maier UG, Zauner S (2009) Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol 82(2):195–201. https://doi.org/10.1007/s00253-008-1804-8

    Article  Google Scholar 

  31. Kroth P (2007) Genetic transformation: A tool to study protein targeting in diatoms. Methods Mol Biol (Clifton, N.J.) 390:257–267. https://doi.org/10.1385/1-59745-466-4:257

  32. Urikura I, Sugawara T, Hirata T (2011) Protective effect of fucoxanthin against UVB-induced skin photoaging in hairless mice. Biosci Biotechnol Biochem 75(4):757–760. https://doi.org/10.1271/bbb.110040

    Article  Google Scholar 

  33. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43. https://doi.org/10.1007/s12155-008-9008-8

    Article  Google Scholar 

  34. Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5(5):1532–1553. https://doi.org/10.3390/en5051532

    Article  Google Scholar 

  35. Ahmadi A, Zorofchian Moghadamtousi S, Abubakar S, Zandi K (2015). Antiviral potential of algae polysaccharides isolated from marine sources: a review. BioMed Research International, 2015. https://doi.org/10.1155/2015/825203

  36. Gastineau R, Pouvreau JB, Hellio C, Morançais M, Fleurence J, Gaudin P, Bourgougnon N, Mouget JL (2012) Biological activities of purified marennine, the blue pigment responsible for the greening of oysters. J Agric Food Chem 60(14):3599–3605. https://doi.org/10.1021/jf205004x

    Article  Google Scholar 

  37. Berge JP, Bourgougnon N, Alban S, Pojer F, Billaudel S, Chermann J-C, Robert JM, Franz G (2002) Antiviral and anticoagulant activities of a water-soluble fraction of the marine diatom Haslea ostrearia. Planta Med 65(7):604–609. https://doi.org/10.1055/s-1999-14032

  38. Shah MR, Lutzu GA, Alam A, Sarker P, Kabir Chowdhury MA, Parsaeimehr A, Liang Y, Daroch M (2018) Microalgae in aquafeeds for a sustainable aquaculture industry. J Appl Phycol 30(1):197–213. https://doi.org/10.1007/s10811-017-1234-z

    Article  Google Scholar 

  39. Sheehan J, Terri D, John B, Paul R (2012) A look back at the U.S. Department of Energy’s aquatic species. Eur Phys J C 72(6):14. https://doi.org/10.2172/15003040

    Article  Google Scholar 

  40. Dolatabadi JEN, de la Guardia M (2011) Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures. TrAC - Trends in Analytical Chemistry 30(9):1538–1548. https://doi.org/10.1016/j.trac.2011.04.015

    Article  Google Scholar 

  41. Maher S, Kumeria T, Aw MS, Losic D (2018) Diatom silica for biomedical applications: recent progress and advances. Adv Healthc Mater 7(19):1–19. https://doi.org/10.1002/adhm.201800552

    Article  Google Scholar 

  42. Sharma A, Sharma S, Sharma K, Chetri SPK, Vashishtha A, Singh P, Kumar R, Rathi B, Agrawal V (2016) Algae as crucial organisms in advancing nanotechnology: a systematic review. J Appl Phycol 28(3):1759–1774. https://doi.org/10.1007/s10811-015-0715-1

    Article  Google Scholar 

  43. Levitan O, Dinamarca J, Hochman G, Falkowski PG (2014) Diatoms: a fossil fuel of the future. Trends Biotechnol 32(3):117–124. https://doi.org/10.1016/j.tibtech.2014.01.004

    Article  Google Scholar 

  44. Rorrer LG, Antonio Torres J, Durst R, Kelly C, Gale D, Maddux B, Ozkan A (2016) The potential of a diatom-based photosynthetic biorefinery for biofuels and valued co-products. Curr Biotechnol 5(3):237–248. https://doi.org/10.2174/2211550105666160229223625

    Article  Google Scholar 

  45. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  Google Scholar 

  46. Arakaki A, Matsumoto T, Tateishi T, Matsumoto M, Nojima D, Tomoko Y, Tanaka T (2017) UV-C irradiation accelerates neutral lipid synthesis in the marine oleaginous diatom Fistulifera solaris. Bioresour Technol 245:1520–1526. https://doi.org/10.1016/j.biortech.2017.05.188

    Article  Google Scholar 

  47. Li XL, Marella TK, Tao L, Li R, Tiwari A, Li G (2017) Optimization of growth conditions and fatty acid analysis for three freshwater diatom isolates. Phycol Res 65(3):177–187. https://doi.org/10.1111/pre.12174

    Article  Google Scholar 

  48. Marella TK, López-Pacheco IY, Parra-Saldívar R, Dixit S, Tiwari A (2020) Wealth from waste: diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Sci Total Environ 724:137960. https://doi.org/10.1016/j.scitotenv.2020.137960

    Article  Google Scholar 

  49. Sanjay KR, Prasad MNN, Anupama S, Yashaswi BR, Deepak B (2013) Isolation of diatom Navicula cryptocephala and characterization of oil extracted for biodiesel production. Afr J Environ Sci Technol 7(1):41–48. https://doi.org/10.5897/AJEST12.066

    Article  Google Scholar 

  50. Orcutt DM, Patterson GW (1974) Effect of light intensity upon lipid composition of Nitzschia closterium (Cylindrotheca fusiformis). Lipids 9(12):1000–1003. https://doi.org/10.1007/BF02533825

    Article  Google Scholar 

  51. Marella TK, Tiwari A (2020) Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin. Bioresour Technol 307(March):123245. https://doi.org/10.1016/j.biortech.2020.123245

    Article  Google Scholar 

  52. Edlund MB, Stoermer EF (1997) Ecological, evolutionary, and systematic significance of diatom life histories. J Phycol 33(6):897–918. https://doi.org/10.1111/j.0022-3646.1997.00897.x

    Article  Google Scholar 

  53. Van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  54. Kale A, Karthick B (2015) The diatoms: big significance of tiny glass houses. Resonance 2015:919–930

    Article  Google Scholar 

  55. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou S, Allen AE, Apt KE, Bechner M, Brzezinski MA, Chaal BK, Chiovitti A, Davis AK, Demarest MS, Detter JC, Glavina T, Goodstein D, Hadi MZ, Hellsten U, Hildebrand M, Jenkins BD, Jurka J, Kapitonov VV, Kröger N, Lau WW, Lane TW, Larimer FW, Lippmeier JC, Lucas S, Medina M, Montsant A, Obornik M, Parker MS, Palenik B, Pazour GJ, Richardson PM, Rynearson TA, Saito MA, Schwartz DC, Thamatrakoln K, Valentin K, Vardi A, Wilkerson FP, Rokhsar DS (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693):79–86. https://doi.org/10.1126/science.1101156

    Article  Google Scholar 

  56. Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A 110(49):19748–19753. https://doi.org/10.1073/pnas.1309299110

    Article  Google Scholar 

  57. Benoiston AS, Ibarbalz FM, Bittner L, Guidi L, Jahn O, Dutkiewicz S, Bowler C (2017) The evolution of diatoms and their biogeochemical functions. Philosophical Transactions of the Royal Society B: Biological Sciences 372(1728):20160397. https://doi.org/10.1098/rstb.2016.0397

    Article  Google Scholar 

  58. Graham JM, Graham LE, Zulkifly SB, Pfleger BF, Hoover SW, Yoshitani J (2012) Freshwater diatoms as a source of lipids for biofuels. J Ind Microbiol Biotechnol 39(3):419–428. https://doi.org/10.1007/s10295-011-1041-5

    Article  Google Scholar 

  59. Leventer A, Domack E, Barkoukis A, McAndrews B, Murray J (2002). Laminations from the palmer deep: a diatom-based interpretation. Paleoceanography, 17(3), PAL 3-1-PAL 3-15. https://doi.org/10.1029/2001pa000624

  60. Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45(4):361–402. https://doi.org/10.2216/05-22.1

    Article  Google Scholar 

  61. Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459(7244):185–192. https://doi.org/10.1038/nature08057

    Article  Google Scholar 

  62. Fields MW, Hise A, Lohman EJ, Bell T, Gardner RD, Corredor L, Moll K, Peyton BM, Characklis GW, Gerlach R (2014) Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl Microbiol Biotechnol 98(11):4805–4816. https://doi.org/10.1007/s00253-014-5694-7

    Article  Google Scholar 

  63. Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, Iudicone D, Karsenti E, Speich S, Trouble R, Dimier C, Searson S (2015) Open science resources for the discovery and analysis of Tara oceans data. Scientific Data 2(Lmd):1–16. https://doi.org/10.1038/sdata.2015.23

    Article  Google Scholar 

  64. Vardi A, Bidle KD, Kwityn C, Hirsh DJ, Thompson SM, Callow JA, Falkowski P, Bowler C (2008) A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes. Curr Biol 18(12):895–899. https://doi.org/10.1016/j.cub.2008.05.037

    Article  Google Scholar 

  65. Fu W, Wichuk K, Brynjólfsson S (2015) Develo** diatoms for value-added products: challenges and opportunities. New Biotechnol 32(6):547–551. https://doi.org/10.1016/j.nbt.2015.03.016

    Article  Google Scholar 

  66. Dutkiewicz S, Ward BA, Scott JR, Follows MJ (2014) Understanding predicted shifts in diazotroph biogeography using resource competition theory. Biogeosciences 11(19):5445–5461. https://doi.org/10.5194/bg-11-5445-2014

    Article  Google Scholar 

  67. Tréguer PJ, De La Rocha CL (2013) The world ocean silica cycle. Annu Rev Mar Sci 5:477–501. https://doi.org/10.1146/annurev-marine-121211-172346

    Article  Google Scholar 

  68. Bernard CY, Laruelle GG, Slomp CP, Heinze C (2010) Impact of changes in river fluxes of silica on the global marine silicon cycle: a model comparison. Biogeosciences 7(2):441–453. https://doi.org/10.5194/bg-7-441-2010

    Article  Google Scholar 

  69. Armstrong RA, Lee C, Hedges JI, Honjo S, Wakeham SG (2002) A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep Sea Research Part II - Topical Studies in Oceanography 49:219–236

    Article  Google Scholar 

  70. Martin-Jézéquel V, Hildebrand M, Brzezinski MA (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36(5):821–840. https://doi.org/10.1046/j.1529-8817.2000.00019.x

    Article  Google Scholar 

  71. Nelson DM, Anderson RF, Barber RT, Brzezinski MA, Buesseler KO, Chase Z, Collier RW, Dickson ML, François R, Hiscock MR, Honjo S, Marra J, Martin WR, Sambrotto RN, Sayles FL, Sigmon DE (2002) Vertical budgets for organic carbon and biogenic silica in the Pacific sector of the Southern Ocean, 1996–1998. Deep-Sea Res II 49:1645–1674

    Article  Google Scholar 

  72. Brzezinski MA, Villareal TA, Lipschultz F (1998) Silica production and the contribution of diatoms to new and primary production in the central North Pacific. Mar Ecol Prog Ser 167:89–104. https://doi.org/10.3354/meps167089

    Article  Google Scholar 

  73. Carbonnel V, Vanderborght J, Lionard M, Chou L (2013). Diatoms, silicic acid and biogenic silica dynamics along the salinity gradient of the Scheldt estuary (Belgium/The Netherlands). Biogeochemistry, 113, 657–682. Retrieved on October 1, 2020, from http://www.jstor.org/stable/24715156

  74. Singh M, Lodha P, Singh GP (2010) Seasonal diatom variations with reference to physico-chemical properties of water of Mansagar Lake of Jaipur, Rajasthan. Res J Agric Sci 1(4):451–457

    Google Scholar 

  75. Singh M, Lodha P, Singh GP, Rajesh S (2011) Studies on diatom diversity in response to abiotic factors in Mawatha Lake of Jaipur, Rajasthan. Int J Life Sci & Pharma Res 1(1):L-29–L-37

    Google Scholar 

  76. Singh M, Parikh P (2020) Freshwater diatoms as bio-indicators in urban wetlands of Central Gujarat, India. Indian J Ecol 47(1):7–11. https://doi.org/10.5281/zenodo.3961445

    Article  Google Scholar 

  77. Stevenson RJ, Bothwell ML, Lowe RL (1996) Algae ecology. Academic Express, San Diego

    Google Scholar 

  78. Lim DSS, Douglas MSV, Smol JP (2001) Diatoms and their relationship to environmental variables from lakes and ponds on Bathurst Island, Nunavut, Canadian high Arctic. Hydrobiologia 450:215–230

    Article  Google Scholar 

  79. Snow NB, Scott BF (2005). The effect and fate of crude oil spilt on two arctic lakes. 2005 International Oil Spill Conference, IOSC 2005, 2160

  80. Faria DMD, Costin JC, Tremarin PI, Ludwig TAV (2019) Temporal changes in biological traits of diatom communities in response to an oil spill in a subtropical river. Anais Da Academia Brasileira de Ciencias 91(2):e20170863. https://doi.org/10.1590/0001-3765201920170863

    Article  Google Scholar 

  81. Dutkiewicz S, Morris JJ, Follows MJ, Scott J, Levitan O, Dyhrman ST, Berman-Frank I (2015) Impact of ocean acidification on the structure of future phytoplankton communities. Nat Clim Chang 5(11):1002–1006. https://doi.org/10.1038/nclimate2722

    Article  Google Scholar 

  82. Terracciano M, Shahbazi MA, Correia A, Rea I, Lamberti A, De Stefano L, Santos HA (2015) Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery. Nanoscale 7(47):20063–20074. https://doi.org/10.1039/c5nr05173h

    Article  Google Scholar 

  83. Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726. https://doi.org/10.1098/rsif.2009.0322

    Article  Google Scholar 

  84. Grima EM, Acie FG, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(2003):491–515

    Article  Google Scholar 

  85. Strand SP, Vårum KM, Østgaard K (2003) Interactions between chitosans and bacterial suspensions: adsorption and flocculation. Colloids Surf B: Biointerfaces 27(1):71–81. https://doi.org/10.1016/S0927-7765(02)00043-7

    Article  Google Scholar 

  86. Poelman E, De Pauw N, Jeurissen B (1997) Potential of electrolytic flocculation for recovery of micro-algae. Resour Conserv Recycl 19(1):1–10. https://doi.org/10.1016/S0921-3449(96)01156-1

    Article  Google Scholar 

  87. Satpati GG, Kanjilal S, Narayana Prasad RB, Pal R (2015). Rapid accumulation of total lipid in Rhizoclonium africanum Kutzing as biodiesel feedstock under nutrient limitations and the associated changes at cellular level. International Journal of Microbiology, 2015. https://doi.org/10.1155/2015/275035

  88. Crossley IA, Valade MT (2006) A review of the technological developments of dissolved air flotation. Journal of Water Supply: Research and Technology - AQUA 55(7–8):479–491. https://doi.org/10.2166/aqua.2006.057

    Article  Google Scholar 

  89. Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Academic Press, London, pp 205–218

    Google Scholar 

  90. Zittelli GC, Biondi N, Rodolfi L, Tredici MR (2013). Photobioreactors for mass production of microalgae BT - absorption and adsorption of heavy metals by microalgae. Handbook OfMicroalgal Culture: Applied Phycology and Biotechnology, 225–266. https://doi.wiley.com/10.1002/9781118567166.ch13%5Cnpapers3://publication/doi/10.1002/9781118567166.ch13

  91. Satpati GG, Pal R (2018) Microalgae- biomass to biodiesel : a review. Journal of Algal Biomass Utilization 9(4):11–37

    Google Scholar 

  92. ‘t Lam, G. P., Vermuë, M. H., Eppink, M. H. M., Wijffels, R. H., & van den Berg, C. (2018). Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol, 36(2), 216–227. https://doi.org/10.1016/j.tibtech.2017.10.011

    Article  Google Scholar 

  93. Liu H, Chen M, Zhu F, Harrison PJ (2016). Effect of diatom silica content on copepod grazing, growth and reproduction. Frontiers in Marine Science, 3(JUN). https://doi.org/10.3389/fmars.2016.00089

  94. Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36(5):2328–2342. https://doi.org/10.1016/j.energy.2011.03.013

    Article  Google Scholar 

  95. Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30(3):709–732. https://doi.org/10.1016/j.biotechadv.2012.01.001

    Article  Google Scholar 

  96. Levin M, Joshi D, Draghi A, Gulland FM, Jessup D, De Guise S (2010) Immunomodulatory effects upon in vitro exposure of California Sea lion and Southern Sea otter peripheral blood leukocytes to domoic acid. J Wildl Dis 46(2):541–550. https://doi.org/10.7589/0090-3558-46.2.541

    Article  Google Scholar 

  97. Wan Maznah WO, Mansor M (2002) Aquatic pollution assessment based on attached diatom communities in the Pinang River basin, Malaysia. Hydrobiologia 487:229–241. https://doi.org/10.1023/A:1022942200740

    Article  Google Scholar 

  98. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Article  Google Scholar 

  99. Bertrand EM, Moran DM, McIlvin MR, Hoffman JM, Allen AE, Saito MA (2013) Methionine synthase interreplacement in diatom cultures and communities: implications for the persistence of B12 use by eukaryotic phytoplankton. Limnol Oceanogr 58(4):1431–1450. https://doi.org/10.4319/lo.2013.58.4.1431

    Article  Google Scholar 

  100. Lee JB, Hayashi K, Hirata M, Kuroda E, Suzuki E, Kubo Y, Hayashi T (2006) Antiviral sulfated polysaccharide from Navicula directa, a diatom collected from deep-sea water in Toyama Bay. Biol Pharm Bull 29(10):2135–2139. https://doi.org/10.1248/bpb.29.2135

    Article  Google Scholar 

  101. Hemaiswarya S, Raja R, Kumar RR, Ganesan V, Anbazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27(8):1737–1746. https://doi.org/10.1007/s11274-010-0632-z

    Article  Google Scholar 

  102. Debelius B, Forja JM, DelValls Á, Lubián LM (2009) Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol Environ Saf 72(5):1503–1513. https://doi.org/10.1016/j.ecoenv.2009.04.006

    Article  Google Scholar 

  103. Catarina A, Xavier F (2012). Nutritional value and uses of microalgae in aquaculture. Aquaculture, January 2012. https://doi.org/10.5772/30576

  104. Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27(2):116–127. https://doi.org/10.1016/j.tibtech.2008.11.003

    Article  Google Scholar 

  105. Zhang DY, Wang Y, Cai J, Pan JF, Jiang XG, Jiang YG (2012) Bio-manufacturing technology based on diatom micro- and nanostructure. Chin Sci Bull 57(30):3836–3849. https://doi.org/10.1007/s11434-012-5410-x

    Article  Google Scholar 

  106. Drum RW, Gordon R (2003) Star trek replicators and diatom nanotechnology. Trends Biotechnol 21(8):325–328. https://doi.org/10.1016/S0167-7799(03)00169-0

    Article  Google Scholar 

  107. Johnson RC (2009). Diatoms could triple solar cell efficiency. EE Times. https://archive.vn/20120731133532/http://www.eetimes.com/showArticle.jhtml?articleID=216500176#selection-1129.0-1129.42)

  108. Ramachandra TV, Mahapatra DM, Karthick B, Gordon R (2009) Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind Eng Chem Res 48(19):8769–8788. https://doi.org/10.1021/ie900044j

    Article  Google Scholar 

  109. Wang JK, Seibert M (2017) Prospects for commercial production of diatoms. Biotechnology for Biofuels 10(1):1–13. https://doi.org/10.1186/s13068-017-0699-y

    Article  Google Scholar 

  110. Mirón AS, Gómez AC, Camacho FG, Grima EM, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. Prog Ind Microbiol 35(C):249–270. https://doi.org/10.1016/S0079-6352(99)80119-2

    Article  Google Scholar 

  111. Hildebrand M, Davis AK, Smith SR, Traller JC, Abbriano R (2012) The place of diatoms in the biofuels industry. Biofuels 3(2):221–240. https://doi.org/10.4155/BFS.11.157

    Article  Google Scholar 

  112. Richmond A (1999) Physiological principles and modes of cultivation in mass production of photoautotrophic microalgae. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis, London, pp 353–386

  113. Richmond A et al (2004) Biological principles of mass cultivation. Handbook of Microalgal Culture, Biotechnology and Applied Phycology, pp 125–177

  114. Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J Appl Phycol 5(1):71–83. https://doi.org/10.1007/BF02182424

    Article  Google Scholar 

  115. Ganesan R, Manigandan S, Samuel MS, Shanmuganathan R, Brindhadevi K, Lan Chi NT, Duc PA, Pugazhendhi A (2020) A review on prospective production of biofuel from microalgae. Biotechnology Reports 27:e00509. https://doi.org/10.1016/j.btre.2020.e00509

    Article  Google Scholar 

  116. Thajuddin N, Ilavarasi A, Baldev E, MubarakAli E, Alharbi NS, Chinnathambi A, Alharbi SA (2015) Stress induced lipids accumulation in naviculoid marine diatoms for bioenergy application. Int J Biotechnol Well Industries 4:18–24

    Article  Google Scholar 

  117. Vecchi V, Barera S, Bassi R, Dall’Osto L (2020) Potential and challenges of improving photosynthesis in algae. Plants 9(67):1–25. https://doi.org/10.3390/plants9010067

    Article  Google Scholar 

  118. Yadavalli, R., Ratnapuram, H., Motamarry, S., & Narjis Fathima, M. (2020). Simultaneous production of flavonoids and lipids from Chlorella vulgaris and Chlorella pyrenoidosa. Biomass Conversion and Biorefinery 2020/10/01. https://doi.org/10.1007/s13399-020-01044-x

Download references

Acknowledgements

The authors thank our colleagues for their constructive critical comments and suggestions that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meenakshi Singh or Kummara Madhusudana Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Diatoms are unique photoautotrophs with promising biomolecules, useful in several biological applications

• Diatom biological and physiological mechanism to obtain high-value metabolites

• Silicious biomass harvesting processes and lipid purification techniques.

• Commercially relevant diatoms suitable for photosynthetic biorefinery approach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mal, N., Srivastava, K., Sharma, Y. et al. Facets of diatom biology and their potential applications. Biomass Conv. Bioref. 12, 1959–1975 (2022). https://doi.org/10.1007/s13399-020-01155-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01155-5

Keywords

Navigation