Log in

Surface Chemical Reactions During Atomic Layer Deposition of Zinc Oxynitride (ZnON)

  • Original Article - Theory, Characterization and Modeling
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Atomic layer deposition (ALD) is a promising technique for fabricating high-quality thin films. For improving the process conditions and material quality of ALD, understanding the surface chemical mechanisms at the molecular level is important as the entire ALD process is based on the reactions of precursors on the substrate surfaces. Zinc oxynitride (ZnON) is gaining significant research interest as a p-type semiconductor material. Although the ALD of ZnON can be performed by dosing H2O and NH3 as oxygen and nitrogen sources, respectively, the elemental ratio of O and N in the deposited film differs considerably from that in the gaseous sources. In this study, the surface reactions of ZnON ALD are analyzed employing density functional theory calculations. All the ALD surface reactions of ZnO and ZnN are facile and expected to occur rapidly. However, the substitution of a surface *NH2 by H2O to form *OH is preferred, whereas the inverse reaction is implausible. We propose that the differences in the reactivity could originate from the higher bond energy of Zn–O than that of Zn–N.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Street, R.A.: Thin-film transistors. Adv. Mater. 21, 2007–2022 (2009)

    Article  CAS  Google Scholar 

  2. Fortunato, E., Barquinha, P., Martins, R.: Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945–2986 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. Park, J.W., Kang, B.H., Kim, H.J.: A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics. Adv. Funct. Mater. 30, 1904632 (2020)

    Article  CAS  Google Scholar 

  4. Baek, I.-H., et al.: High-performance thin-film transistors of quaternary indium–zinc–tin oxide films grown by atomic layer deposition. ACS Appl. Mater. Interfaces 11, 14892–14901 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. Hur, J.S., et al.: High-performance thin-film transistor with atomic layer deposition (ALD)-derived indium-gallium oxide channel for back-end-of-line compatible transistor applications: cation combinatorial approach. ACS Appl. Mater. Interfaces 14, 48857–48867 (2022)

    Article  CAS  PubMed  Google Scholar 

  6. Hong, T., Kim, Y.-S., Choi, S.-H., Lim, J.H., Park, J.-S.: Exploration of chemical composition of In–Ga–Zn–O system via PEALD technique for optimal physical and electrical properties. Adv. Electron. Mater. 9, 2201208 (2023)

    Article  CAS  Google Scholar 

  7. Burgess, C.H.: Review of tailoring ZnO for optoelectronics through atomic layer deposition experimental variables. Mater. Sci. Technol. 33, 809–821 (2017)

    Article  CAS  Google Scholar 

  8. Wang, M., et al.: High-performance flexible ZnO thin-film transistors by atomic layer deposition. IEEE Electron Device Lett. 40, 419–422 (2019)

    Article  CAS  Google Scholar 

  9. Saha, J.K., Billah, M.M., Jang, J.: Triple-stack ZnO/AlZnO/YZnO heterojunction oxide thin-film transistors by spray pyrolysis for high mobility and excellent stability. ACS Appl. Mater. Interfaces 13, 37350–37362 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. Kim, H.-D., Kim, J.H., Jang, S.C., Nahm, H.-H., Kim, H.-S.: Deterministic role of fluorine incorporation in the amorphous Zn–O–N semiconductors: first-principles and experimental studies. AIP Adv. 11, 105102 (2021)

    Article  CAS  Google Scholar 

  11. Kim, H.-D., et al.: Nonvolatile high-speed switching Zn-O-N thin-film transistors with a bilayer structure. ACS Appl. Mater. Interfaces 14, 13490–13498 (2022)

    Article  CAS  PubMed  Google Scholar 

  12. Park, J., et al.: The effects of active layer thickness and annealing conditions on the electrical performance of ZnON thin-film transistors. J. Alloys Compd. 688, 666–671 (2016)

    Article  CAS  Google Scholar 

  13. Cho, M.H., Choi, C.H., Jeong, J.K.: Recent progress and perspectives on atomic-layer-deposited semiconducting oxides for transistor applications. J. Soc. Inf. Disp. 30, 175–197 (2022)

    Article  CAS  Google Scholar 

  14. Macco, B., Kessels, W.M.M.: Atomic layer deposition of conductive and semiconductive oxides. Appl. Phys. Rev. 9, 041313 (2022)

    Article  CAS  Google Scholar 

  15. Kim, H.-M., Kim, D.-G., Kim, Y.-S., Kim, M., Park, J.-S.: Atomic layer deposition for nanoscale oxide semiconductor thin film transistors: review and outlook. Int. J. Extreme Manuf. 5, 012006 (2023)

    Article  Google Scholar 

  16. Mackus, A.J.M., Schneider, J.R., MacIsaac, C., Baker, J.G., Bent, S.F.: Synthesis of doped, ternary, and quaternary materials by atomic layer deposition: a review. Chem. Mater. 31, 1142–1183 (2019)

    Article  CAS  Google Scholar 

  17. Coll, M., Napari, M.: Atomic layer deposition of functional multicomponent oxides. APL Mater. 7, 110901 (2019)

    Article  Google Scholar 

  18. Tripathi, T.S., Karppinen, M.: Mixed-anion compounds: an unexplored playground for ALD fabrication. Adv. Mater. Interfaces 8, 2100146 (2021)

    Article  Google Scholar 

  19. Lujala, V., Skarp, J., Tammenmaa, M., Suntola, T.: Atomic layer epitaxy growth of doped zinc oxide thin films from organometals. Appl. Surf. Sci. 82–83, 34–40 (1994)

    Article  Google Scholar 

  20. Sinha, S., Sarkar, S.K.: Atomic layer deposition of textured zinc nitride thin films. RSC Adv. 4, 47177–47183 (2014)

    Article  CAS  Google Scholar 

  21. Hsu, C.T.: Growth of ZnSxSe1−x layers on Si substrates by atomic layer epitaxy. Mater. Chem. Phys. 58, 6–11 (1999)

    Article  CAS  Google Scholar 

  22. Mullings, M.N., et al.: Thin film characterization of zinc tin oxide deposited by thermal atomic layer deposition. Thin Solid Films 556, 186–194 (2014)

    Article  CAS  Google Scholar 

  23. Lancaster, D.K., Sun, H., George, S.M.: Atomic layer deposition of Zn(O, S) Alloys Using diethylzinc with H2O and H2S: effect of exchange reactions. J. Phys. Chem. C 121, 18643–18652 (2017)

    Article  CAS  Google Scholar 

  24. Choi, J.-W., et al.: Tin oxysulfide composite thin films based on atomic layer deposition of tin sulfide and tin oxide using Sn(dmamp)2 as Sn precursor. Ceram. Int. 46, 5109–5118 (2020)

    Article  CAS  Google Scholar 

  25. Choi, S., et al.: Growth of Al-rich AlGaN thin films by purely thermal atomic layer deposition. J. Alloys Compd. 854, 157186 (2021)

    Article  CAS  Google Scholar 

  26. Lee, C., Lim, J.: Dependence of the electrical properties of the ZnO thin films grown by atomic layer epitaxy on the reactant feed sequence. J. Vac. Sci. Technol. A 24, 1031–1035 (2006)

    Article  CAS  Google Scholar 

  27. Levy, D.H., Freeman, D., Nelson, S.F., Cowdery-Corvan, P.J., Irving, L.M.: Stable ZnO thin film transistors by fast open air atomic layer deposition. Appl. Phys. Lett. 92, 192101 (2008)

    Article  Google Scholar 

  28. Lim, S.J., et al.: Atomic layer deposition ZnO: N Thin film transistor: the effects of N concentration on the device properties. J. Electrochem. Soc. 157, H214 (2009)

    Article  Google Scholar 

  29. Chien, J.-F., Chen, C.-H., Shyue, J.-J., Chen, M.-J.: Local electronic structures and electrical characteristics of well-controlled nitrogen-doped ZnO thin films prepared by remote plasma in situ atomic layer do**. ACS Appl. Mater. Interfaces 4, 3471–3475 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. Kim, S.H., et al.: Growth enhancement and nitrogen loss in ZnOxNy low-temperature atomic layer deposition with NH3. J. Phys. Chem. C 119, 23470–23477 (2015)

    Article  CAS  Google Scholar 

  31. Guziewicz, E., et al.: Abundant acceptor emission from nitrogen-doped ZnO films prepared by atomic layer deposition under oxygen-rich conditions. ACS Appl. Mater. Interfaces 9, 26143–26150 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. Ding, X., et al.: Nitrogen-doped ZnO film fabricated via rapid low-temperature atomic layer deposition for high-performance ZnON transistors. IEEE Trans. Electron Dev 65, 3283–3290 (2018)

    Article  CAS  Google Scholar 

  33. Pore, V., Heikkilä, M., Ritala, M., Leskelä, M., Areva, S.: Atomic layer deposition of TiO2−xNx thin films for photocatalytic applications. J. Photochem. Photobiol. Chem. 177, 68–75 (2006)

    Article  CAS  Google Scholar 

  34. Parashar, P.K., Kinnunen, S.A., Sajavaara, T., Toppari, J.J., Komarala, V.K.: Thermal atomic layer deposition of AlOxNy thin films for surface passivation of nano-textured flexible silicon. Sol. Energy Mater. Sol. Cells 193, 231–236 (2019)

    Article  CAS  Google Scholar 

  35. Richey, N.E., de Paula, C., Bent, S.F.: Understanding chemical and physical mechanisms in atomic layer deposition. J. Chem. Phys. 152, 040902 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. Li, J., Chai, G., Wang, X.: Atomic layer deposition of thin films: from a chemistry perspective. Int. J. Extreme Manuf. 5, 032003 (2023)

    Article  Google Scholar 

  37. Ren, J.: Initial growth mechanism of atomic layer deposition of ZnO on the hydroxylated Si(100)−2×1: a density functional theory study. Appl. Surf. Sci. 255, 5742–5745 (2009)

    Article  CAS  Google Scholar 

  38. Dong, L., et al.: Initial reaction mechanism of nitrogen-doped zinc oxide with atomic layer deposition. Thin Solid Films 517, 4355–4359 (2009)

    Article  CAS  Google Scholar 

  39. Tanskanen, J.T., Hägglund, C., Bent, S.F.: Correlating growth characteristics in atomic layer deposition with precursor molecular structure: the case of zinc tin oxide. Chem. Mater. 26, 2795–2802 (2014)

    Article  CAS  Google Scholar 

  40. Weckman, T., Laasonen, K.: Atomic layer deposition of zinc oxide: diethyl zinc reactions and surface saturation from first-principles. J. Phys. Chem. C 120, 21460–21471 (2016)

    Article  CAS  Google Scholar 

  41. Weckman, T., Laasonen, K.: Atomic layer deposition of zinc oxide: study on the water pulse reactions from first-principles. J. Phys. Chem. C 122, 7685–7694 (2018)

    Article  CAS  Google Scholar 

  42. Van, N., Thi, T., Ansari, A.S., Shong, B.: Surface chemical reactions during atomic layer deposition of ZnO, ZnS, and Zn (O, S). J. Vac. Sci. Technol. A 37(2), 98 (2019)

    Article  Google Scholar 

  43. Frisch, M. J. et al. (2016) Gaussian 16.

  44. Neese, F.: Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8, e1327 (2018)

    Article  Google Scholar 

  45. Klaus, J.W., George, S.M.: Atomic layer deposition of SiO2 at room temperature using NH3-catalyzed sequential surface reactions. Surf. Sci. 447, 81–90 (2000)

    Article  CAS  Google Scholar 

  46. Jung, S.-H., Kang, S.-W.: Formation of TiO2 thin films using NH3 as catalyst by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 40, 3147 (2001)

    Article  CAS  Google Scholar 

  47. Chen, S., Fang, G., Qian, X., Li, A., Ma, J.: Influence of Alkalinity and steric hindrance of lewis-base catalysts on atomic layer deposition of SiO2. J. Phys. Chem. C 115, 23363–23373 (2011)

    Article  CAS  Google Scholar 

  48. Fang, G., Chen, S., Li, A., Ma, J.: Surface pseudorotation in lewis-base-catalyzed atomic layer deposition of SiO2: static transition state search and born-oppenheimer molecular dynamics simulation. J. Phys. Chem. C 116, 26436–26448 (2012)

    Article  CAS  Google Scholar 

  49. Luo, Y.R.: Comprehensive Handbook of Chemical Bond Energies. CRC Press (2007)

    Book  Google Scholar 

  50. Wriedt, H.A.: The N−Zn (Nitrogen-Zinc) system. Bull. Alloy Phase Diagr. 9, 247–251 (1988)

    Article  Google Scholar 

  51. Dean, J.A.: Lange’s Handbook of Chemistry. McGraw-Hill (1998)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT, RS-2023-00210186). This work was supported by the Technology Innovation Program (Public-private joint investment semiconductor R&D program (K-CHIPS) to foster high-quality human resources) (RS-2023-00236667, High performance Ru-TiN interconnects via high temperature atomic layer deposition (ALD) and development on new interconnect materials based on ALD) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea) (1415187401). This work was supported by the National Supercomputing Center with supercomputing resources including technical support (KSC-2022-CRE-0280).

Funding

The Funding was provided by National Research Foundation of Korea, (RS-2023-00210186), Bonggeun Shong, Technology Innovation Program, (RS-2023-00236667), Bonggeun Shong

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonggeun Shong.

Ethics declarations

Conflict of interest

The authors have no competing Interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngoc Van, T.T., Shong, B. Surface Chemical Reactions During Atomic Layer Deposition of Zinc Oxynitride (ZnON). Electron. Mater. Lett. 20, 500–507 (2024). https://doi.org/10.1007/s13391-023-00467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00467-8

Keywords

Navigation