Log in

Design, Development and Analysis of High-Frequency Dual-Band 4 × 1 Monopole Array Antenna

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A circular ring structure monopolar printed antenna for Doppler and automotive radar systems (24 GHz) is designed with a size of 1.4λ0 × 1.4λ0 × 0.095λ0 mm3 observing |S11|> −20 dB, B.W. of 1.8 GHz and a peak gain of 5.1 dBi. This antenna upgraded initially into 2 × 1 and finally 4 × 1 array, having resonant frequencies at 24 GHz and 28 GHz, respectively. A peak gain of 7.12 and 7.16 dBi through 2 × 1 and 9 and 8.65 dBi through 4 × 1 array is observed at respective operating frequencies. Finally, the 4 × 1 array antenna with the tapered feed of size 4.4λ0 × 2.2λ0 × 0.095λ0 mm3 having |S11|≤ 40 dB at ISM-III (24 GHz) and |S11|≤ −30 dB at 5G (28 GHz) with B.W. of 0.77 GHz and 5.1 GHz, respectively, is proposed, qualifying the obtained measured results. Isolation between each antenna element for the 4 × 1 array is ≤ −20 dB with a maximum value of −65 dB. The ECC observed between antenna elements is less than 0.045 and DG is 10. An equivalent circuit is also evaluated for the proposed antenna. The quantification results present that the developed array antenna has excellent performance over the dual band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kuo, F.Y.; Hwang, R.B.: High-isolation X-band marine radar antenna design. IEEE Trans. Antennas Propag. 62(5), 2331–2337 (2014)

    Article  Google Scholar 

  2. Xu, Y.; Qiu, J.; Yang, C.; Chu, H.; Lan, S.; Denisov, A.: A novel millimeter-wave antenna module design for automotive radar sensors. In: 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), pp. 1–3. IEEE

  3. Bi, X.; Ma, Z.; Wang, W.; Du, J.: SAE Technical paper series. In: SAE international SAE-TONGJI 2016 driving technology of intelligent vehicle symposium, (Sept 22, 2016). SAE technical paper series-a multi-function automotive MM-wave radar design. 1, (2016)

  4. Huang, C.; Yang, W.; Chen, B.; Lei, S.; Hu, H.; Huang, W.: A wideband monopolar patch antenna with a high system fidelity factor for IR-UWB application. Microw. Opt. Technol. Lett. 65(8), 2285–2292 (2023)

    Article  Google Scholar 

  5. Hu, B.; Shen, Z.: Broadband circularly polarized moon-shaped monopole antenna. Microw. Opt. Technol. Lett. 57(5), 1135–1139 (2015)

    Article  Google Scholar 

  6. Jia, Y.; Liu, Y.; Zhang, Y.: A 24 GHz microstrip antenna array with large space and narrow beamwidth. Microw. Opt. Technol. Lett. 62(4), 1615–1620 (2020)

    Article  Google Scholar 

  7. Shan, J.; Rambabu, K.; Zhang, Y.; Lin, J.: High gain array antenna for 24 GHz FMCW automotive radars. AEU-Int. J. Electron. Commun. 147, 154144 (2022)

    Article  Google Scholar 

  8. Qian, J.; Zhu, H.; Tang, M.; Mao, J.: A 24 GHz microstrip comb array antenna with high sidelobe suppression for radar sensor. IEEE Antennas Wirel. Propag. Lett. 20(7), 1220–1224 (2021)

    Article  Google Scholar 

  9. Valkonen, R.: Compact 28 GHz phased array antenna for 5G access. In: 2018 IEEE/MTT-S International Microwave Symposium-IMS, pp. 1334–1337. IEEE (2018)

  10. Naqvi, S.A.; Baqir, M.A.; Gourley, G.; Iftikhar, A.; Saeed Khan, M.; Anagnostou, D.E.: A novel meander line metamaterial absorber operating at 24 GHz and 28 GHz for the 5G applications. Sensors 22(10), 3764 (2022)

    Article  Google Scholar 

  11. Chaudhuri, Sumantra; Mishra, Mohit; Kshetrimayum, Rakhesh Singh; Sonkar, Ramesh Kumar; Chel, Haradhan; Singh, Vivek Kumar: Rectangular DRA array for 24 GHz ISM-band applications. IEEE Antennas Wirel. Propag. Lett. 19(9), 1501–1505 (2020)

    Article  Google Scholar 

  12. Sharma, S.; Kanaujia, B.K.; Khandelwal, M.K.: Analysis and design of single and dual element bowtie microstrip antenna embedded with planar long wire for 5G wireless applications. Microw. Opt. Technol. Lett. 62(3), 1281–1290 (2020)

    Article  Google Scholar 

  13. Yeo, J.; Lee, J.I.: Gain enhancement of microstrip patch array antennas using two metallic plates for 24 GHz radar applications. Electronics 12(7), 1512 (2023)

    Article  Google Scholar 

  14. Dixit, A.S.; Kumar, S.: The enhanced gain and cost-effective antipodal Vivaldi antenna for 5G communication applications. Microw. Opt. Technol. Lett. 62(6), 2365–2374 (2020)

    Article  Google Scholar 

  15. Zou, Q.; Gu, Z.; **e, R.; Zhang, Z.; Zhang, H.; Ding, J.: High-gain UWB double slot vivaldi antenna loaded with metasurface and semi-elliptical slots. Microw. Opt. Technol. Lett. (2023). https://doi.org/10.1002/mop.33713

    Article  Google Scholar 

  16. Li, C.; Liu, Y.: Gain and bandwidth enhancement of low-profile unidirectional radiation spiral slot antenna. Microw. Opt. Technol. Lett. (2023). https://doi.org/10.1002/mop.33723

    Article  Google Scholar 

  17. Wang, M.; Li, X.; Mo, D.; Chen, Z.; Tian, Z.: A broadband single-layer substrate integrated waveguide cavity-backed slot array antenna with improved gain. Electromagnetics 42(7), 473–484 (2022). https://doi.org/10.1080/02726343.2022.2154468

    Article  Google Scholar 

  18. Liu, Y.; Liang, J.; Han, L.; Zhang, W.; Chen, F.: Full-corporate-feed high-gain planar array antenna with cross-loop slots. Electromagnetics 41(5), 359–366 (2021). https://doi.org/10.1080/02726343.2021.1962606

    Article  Google Scholar 

  19. Kumar, P., et al.: A compact quad-port UWB MIMO antenna with improved isolation using a novel mesh-like decoupling structure and unique DGS. IEEE Trans. Circuits Syst. II Express Briefs 70(3), 949–953 (2023). https://doi.org/10.1109/TCSII.2022.3220542

    Article  Google Scholar 

  20. Chakravarthy, V.V.S.S.S.; Chowdary, P.S.R.; Dib, N., et al.: Elliptical antenna array synthesis using evolutionary computing tools. Arab. J. Sci. Eng. 47, 2807–2824 (2022). https://doi.org/10.1007/s13369-021-05852-9

    Article  Google Scholar 

  21. Biswas, R.; Nandi, A.; Parsha, M.K., et al.: High isolation, wide aperture antenna array using auxiliary feeds and EBG surface for 5G communication. Arab. J. Sci. Eng. 47, 14935–14945 (2022). https://doi.org/10.1007/s13369-022-07078-9

    Article  Google Scholar 

  22. M.Tech credit seminar report, Electronic Systems group, EE Dept, IIT Bombay submitted Nov 03. Broadband Planar Monopole Antennas Rajender Singh (03307421) Superviser: Prof Girish Kumar

  23. Van Valkenburg M.E.: Network Analysis, Pearson

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Abhishek.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhishek, A., Suraj, P. Design, Development and Analysis of High-Frequency Dual-Band 4 × 1 Monopole Array Antenna. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08870-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08870-5

Keywords

Navigation