Log in

Transport Phenomena Study of Low-Prandtl-Number Fluid Flow Using Thermal Lattice Boltzmann Technique

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The impetus of this paper is to examine the natural convection of low-Prandtl-number fluid flow driven by buoyancy force in a differentially heated enclosure using the single-relaxation-time thermal lattice Boltzmann method owing to the broad range of applications of convective-based problems in industry, such as melting processes as well as energy storage systems. In this study, a proper force term incorporated in the collision operator has been utilized for computer code convergence (especially for Prandtl numbers less than 0.71). The side walls of the geometry are maintained by constant temperatures, Th and Tc, and the upper and lower walls are thermally insulated. The effects of Prandtl (\(0.05\le {\text{Pr}}\le 0.71\)) and Rayleigh numbers (\({10}^{4}\le {\text{Ra}}\le {5\times 10}^{5}\)) on the temperature fields, streamline functions, and average Nusselt number have been studied and found that at a given Prandtl number, the magnitude of vortices at the corner of the enclosure rises while those could disappear by Prandtl number increase. In addition, in the vicinity of hot and cold walls, the isotherms concentration increases due to rising temperature gradient and Prandtl number. The heat transfer coefficient grows with an increase in Ra and Pr numbers, experiencing a dramatic rise of 66.67% at the hot wall for Pr = 0.1. Similarly, the maximum velocity values near the cold wall rose by 185.71%. The suggested scheme has been validated by results shown in the literature, and excellent agreement has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

\(c\) :

Lattice speed (\( \frac{{\text{m}}}{{\text{s}}} \))

\(c\) :

Lattice speed (\( \frac{{\text{m}}}{{\text{s}}} \))

\({{\varvec{c}}}_{i}\) :

Discrete velocity vectors (\( \frac{{\text{m}}}{{\text{s}}} \))

\({c}_{\text{s}}\) :

Speed of sound (\( \frac{{\text{m}}}{{\text{s}}} \))

f :

Density distribution function (\( \frac{{{\text{kg}}}}{{{\text{m}}^{3} }}\))

g :

Thermal distribution function (\( \frac{{{\text{kg}}}}{{{\text{m}}^{3} }}\))

H :

Height of the enclosure (m)

\(L\) :

Length of the enclosure (m)

\({F}_{i}\) :

Discrete body force (\( \frac{{{\text{kg}}}}{{{\text{m}}^{3} {\text{s}}}} \))

g :

Acceleration owing to gravity (\( \frac{{{\text{kg}}}}{{{\text{m}}^{3} {\text{s}}}} \))

\({\text{Nu}}\) :

Nusselt number

\({\text{Pr}}\) :

Prandtl number

Ra:

Rayleigh number

T :

Temperature (K)

\({T}_{\text{h}}\) :

Hot wall temperature (K)

\({T}_{\text{c}}\) :

Cold wall temperature (K)

\({T}_{{\text{ref}}}\) :

Reference temperature (K)

t :

Time (s)

V :

Velocity vector (\( \frac{{\text{m}}}{{\text{s}}} \))

x :

Location (m)

\(\alpha \) :

Thermal diffusivity (\( \frac{{{\text{m}}^{2} }}{{\text{s}}} \))

\(\beta \) :

Volume expansion coefficient (1/K)

\(\upsilon \) :

Kinematic viscosity (\( \frac{{{\text{m}}^{2} }}{{\text{s}}} \))

\(\delta t\) :

Time step (s)

\(\Delta T\) :

Temperature difference between the hot and cold side walls (K)

\(\delta x\) :

Step by step (m)

\(\rho \) :

Density (\( \frac{{{\text{kg}}}}{{{\text{m}}^{3} }} \))

\({\tau }_{\alpha }\) :

Thermal Relaxation time

\({\tau }_{\nu }\) :

Relaxation time related to fluid viscosity

\({\omega }_{i}\) :

Weight factors

c:

Cold

eq:

Equilibrium

h:

Hot

i:

Direction in a discrete lattice

l:

Left

r:

Right

ref:

Reference

References

  1. Rahman, A.; Redwan, D.A.; Thohura, S.; Molla, M.: Natural convection and entropy generation of non-Newtonian nanofluids with different angles of external magnetic field using GPU accelerated MRT-LBM. Case Stud. Therm. Eng. 30, 101769 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.082

    Article  Google Scholar 

  2. Shahzad, H.; Ul, Q.; Ali, A.; Irshad, K.; Shah, A.; Ghaffari, A.; Hafeez, B.; Krawczuk, M.: Double-diffusive natural convection energy transfer in magnetically influenced Casson fluid flow in trapezoidal enclosure with fillets. Int. Commun. Heat Mass Transf. 137, 106236 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2022.106236

    Article  Google Scholar 

  3. Xu, A.; Shi, L.; **, H.: Lattice Boltzmann simulations of three-dimensional thermal convective flows at high Rayleigh number. Int. J. Heat Mass Transf. 140, 359–370 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.002

    Article  Google Scholar 

  4. Khakrah, H.; Hooshmand, P.; Ross, D.; Jamshidian, M.: Numerical analysis of free convection and entropy generation in a cavity using compact finite-difference lattice Boltzmann method. Int. J. Numer. Methods Heat Fluid Flow 30(2), 977–995 (2019). https://doi.org/10.1108/HFF-07-2019-0532

    Article  Google Scholar 

  5. Rahman, A.; Nag, P.; Molla, M.: Lattice Boltzmann simulation of MHD non-Newtonian power-law nanofluid in a rectangular enclosure using GPU computing. AIP Conf. Proc. 2324(1), 040010 (2021). https://doi.org/10.1063/5.0037570

    Article  Google Scholar 

  6. Ge, H.; Li, H.; Mei, S.; Liu, J.: Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area. Renew. Sustain. Energy Rev. 21, 331–346 (2013). https://doi.org/10.1016/j.rser.2013.01.008

    Article  CAS  Google Scholar 

  7. Zhang, T.; Shi, B.; Chai, Z.: Lattice Boltzmann simulation of lid-driven flow in trapezoidal cavities. Comput. Fluids 39(10), 1977–1989 (2010). https://doi.org/10.1016/j.compfluid.2010.06.027

    Article  Google Scholar 

  8. Du, W.; Chen, S.; Wu, G.: A new lattice Boltzmann method for melting processes of high Prandtl number phase change materials. J Energy Storag. 41, 103006 (2021). https://doi.org/10.1016/j.est.2021.103006

    Article  Google Scholar 

  9. Clever, R.M.; Busse, F.H.: Low-Prandtl-number convection in a layer heated from below. J. Fluid Mech. 102, 61–74 (1981). https://doi.org/10.1017/S002211208100253X

    Article  ADS  Google Scholar 

  10. Hart, J.E.: Low Prandtl number convection between differentially heated end walls. Int. J. Heat Mass Transf. 26(7), 1069–1074 (1983). https://doi.org/10.1016/S0017-9310(83)80131-8

    Article  Google Scholar 

  11. Henry, D.; Buffat, M.: Two- and three-dimensional numerical simulations of the transition to oscillatory convection in low-Prandtl-number fluids. J. Fluid Mech. 374, 145–171 (1998). https://doi.org/10.1017/S0022112098002523

    Article  ADS  Google Scholar 

  12. Langerman, M.A.; MacKinnon, R.J.: Estimating natural convection in low Prandtl cavity flows. Numer. Heat Transf. Part A Appl. 24(2), 221–228 (1993). https://doi.org/10.1080/10407789308902615

    Article  ADS  CAS  Google Scholar 

  13. Mohamad, A.A.; Viskanta, R.: Transient low Prandtl number fluid convection in a lid-driven cavity. Numer. Heat Transf. Part A. 19, 187–205 (1991). https://doi.org/10.1080/10407789108944845

    Article  ADS  Google Scholar 

  14. Mohamad, A.A.; Viskanta, R.: An evaluation of different discretization schemes for natural convection of low-Prandtl-number fluids in cavities. Numer. Heat Transf. Part B Fundam. 16(2), 179–192 (2010). https://doi.org/10.1080/10407798908944934

    Article  ADS  Google Scholar 

  15. Mohamad, A.A.; Viskanta, R.: Transient natural convection of low-Prandtl-number fluids in a differentially heated cavity. Int J Numer Methods Fluids. 13(1), 61–81 (1991). https://doi.org/10.1002/fld.1650130105

    Article  CAS  Google Scholar 

  16. Oztop, H.F.; Dagtekin, I.: Mixed convection in two-sided lid-driven differentially heated square cavity. Int. J. Heat Mass Transf. 47(8–9), 1761–1769 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2003.10.016

    Article  Google Scholar 

  17. D’Orazio, A.; Corcione, M.; Celata, G.P.: Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition. Int. J. Therm. Sci. 43(6), 575–586 (2004). https://doi.org/10.1016/j.ijthermalsci.2003.11.002

    Article  Google Scholar 

  18. Pratte, J.M.; Hart, J.E.: Endwall driven, low Prandtl number convection in a shallow rectangular cavity. J. Cryst. Growth 102(1–2), 54–68 (1990). https://doi.org/10.1016/0022-0248(90)90888-R

    Article  ADS  CAS  Google Scholar 

  19. De Vahl Davis, G.: Natural convection of air in a square cavity: a bench mark numerical solution. Int. J. Numer. Methods Fluids 3(3), 249–264 (1983). https://doi.org/10.1002/fld.1650030305

    Article  Google Scholar 

  20. Arun, S.; Satheesh, A.: Analysis of flow behaviour in a two sided lid driven cavity using lattice Boltzmann technique. Alex. Eng. J. 54(4), 795–806 (2015). https://doi.org/10.1016/j.aej.2015.06.005

    Article  Google Scholar 

  21. Roy, S.; Basak, T.: Finite element analysis of natural convection flows in a square cavity with non-uniformly heated wall(s). Int. J. Eng. Sci. 43(8–9), 668–680 (2005). https://doi.org/10.1016/j.ijengsci.2005.01.002

    Article  CAS  Google Scholar 

  22. Mohamad, A.A.; Kuzmin, A.: A critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int. J. Heat Mass Transf. 53(5–6), 990–996 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.014

    Article  Google Scholar 

  23. Lu, LS.: Lattice-gas automata and lattice Boltzmann equations for two dimensional hydrodynamics. Georgia Inst. Technol. (1993)

  24. Gangawane, K.M.; Bharti, R.P.; Kumar, S.: Lattice Boltzmann analysis of natural convection in a partially heated open ended enclosure for different fluids. J. Taiwan Inst. Chem. Eng. 49, 27–39 (2015). https://doi.org/10.1016/j.jtice.2014.11.020

    Article  CAS  Google Scholar 

  25. Gangawane, K.M.; Bharti, R.P.; Kumar, S.: Two-dimensional lattice Boltzmann simulation of natural convection in differentially heated square cavity: effect of Prandtl and Rayleigh numbers. Can. J. Chem. Eng. 93(4), 766–780 (2015). https://doi.org/10.1002/cjce.22161

    Article  CAS  Google Scholar 

  26. Gangawane, K.M.; Bharti, R.P.; Kumar, S.: Effects of heating location and size on natural convection in partially heated open ended enclosure by using lattice Boltzmann method. Heat Trans Eng. 37(6), 507–522 (2016). https://doi.org/10.1080/01457632.2015.1060748

    Article  ADS  CAS  Google Scholar 

  27. Dixit, H.N.; Babu, V.: Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. Int. J. Heat Mass Transf. 49(3–4), 727–739 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.046

    Article  Google Scholar 

  28. Basak, T.; Roy, S.; Balakrishnan, A.R.: Effects of thermal boundary conditions on natural convection flows within a square cavity. Int. J. Heat Mass Transf. 49(23–24), 4525–4535 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.015

    Article  Google Scholar 

  29. Rahim, K.M.Z.; Ahmed, J.; Nag, P.; Molla, M.: Lattice Boltzmann simulation of natural convection and heat transfer from multiple heated blocks. Heat Transf. 49(4), 1877–1894 (2020). https://doi.org/10.1002/htj.21698

    Article  Google Scholar 

  30. Bawazeer, S.; Mohamad, A.A.; Oclon, P.: Natural convection in a differentially heated enclosure filled with low Prandtl number fluids with modified lattice Boltzmann method. Int. J. Heat Mass Transf. 143, 118562 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118562

    Article  CAS  Google Scholar 

  31. Samanta, R.; Chattopadhyay, H.; Guha, C.: Transport phenomena in a differentially heated lid-driven cavity: a study using multi-relaxation-time thermal lattice Boltzmann modeling. Phys. Fluids 32(9), 093610 (2020). https://doi.org/10.1063/5.0021105

    Article  ADS  CAS  Google Scholar 

  32. Nabavizadeh, S.A.; Barua, H.; Eshraghi, M.; Felicelli, S.D.: Multiple-grid lattice Boltzmann method for natural convection under low and high Prandtl numbers. Fluids. 6(4), 148 (2021). https://doi.org/10.3390/fluids6040148

    Article  ADS  CAS  Google Scholar 

  33. Çolak, E.; Ekici, O.; Oztop, H.F.: Mixed convection in a lid-driven cavity with partially heated porous block. Int Commun Heat Mass Transf. 126, 105450 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105450

    Article  Google Scholar 

  34. Mendu, S.S.; Das, P.K.: Lattice Boltzmann modeling for natural convection in power- law fluids within a partially heated square enclosure. J. Heat Transf. 143(3), 032601 (2021). https://doi.org/10.1115/1.4049472

    Article  CAS  Google Scholar 

  35. Ahangar, E.K.; Izanlu, M.; Jabbari, M.; Ahmadi, G.; Karimipour, A.: Thermal microscale gas flow simulation using wall function and bounce-back scheme: modified lattice Boltzmann method. Int Commun Heat Mass Transf. 119, 104993 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104993

    Article  Google Scholar 

  36. Ahangar, E.K.; Fallah-Kharmiani, S.; Khakhian, S.D.; Wang, L.P.: A lattice Boltzmann study of rarefied gaseous flow with convective heat transfer in backward facing micro-step. Phys. Fluids 32(6), 062005 (2020). https://doi.org/10.1063/5.0008325

    Article  ADS  CAS  Google Scholar 

  37. Benhamou, J.; Channouf, S.; Lahmer, E.B.; Jami, M.; Mezrhab, A.: Hybrid-lattice Boltzmann Method for the simulation of magnetohydrodynamic conjugate heat transfer and entropy generation in three dimensions. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-08273-y

    Article  Google Scholar 

  38. Lu, L.S.: Unified theory of lattice Boltzmann models for nonideal gases. Phys. Rev. Lett. 81, 1618 (1998). https://doi.org/10.1103/PhysRevLett.81.1618

    Article  ADS  Google Scholar 

  39. Baliti, J.; Elguennouni, Y.; Hssikou, M.; Alaoui, M.: Simulation of natural convection by multirelaxation time lattice Boltzmann method in a triangular enclosure. Fluids 7(2), 74 (2022). https://doi.org/10.3390/fluids7020074

    Article  ADS  CAS  Google Scholar 

  40. Shahid, H.; Yaqoob, I.; Khan, W.A.; Rafique, A.: Mixed convection in an isosceles right triangular lid driven cavity using multi relaxation time lattice Boltzmann method. Int. Commun. Heat Mass Transf. 128, 105552 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2021.105552

    Article  Google Scholar 

  41. Mohamad, A.A.: Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes. Springer, London (2019)

    Book  Google Scholar 

  42. Hsieh, S.S.; Wang, C.Y.: Experimental study of three-dimensional natural convection in enclosures with different working fluids. Int. J. Heat Mass Transf. 37(17), 2687–2698 (1994). https://doi.org/10.1016/0017-9310(94)90385-9

    Article  Google Scholar 

  43. Ahangar, E.K.; Ayani, M.B.; Esfahani, J.A.: Simulation of rarefied gas flow in a microchannel with backward facing step by two relaxation times using Lattice Boltzmann method–Slip and transient flow regimes. Int. J. Mech. Sci. 157–158, 802–815 (2019). https://doi.org/10.1016/j.ijmecsci.2019.05.025

    Article  Google Scholar 

  44. Ahangar, E.K.; Ayani, M.B.; Esfahani, J.A.; Kim, K.C.: Lattice Boltzmann simulation of diluted gas flow inside irregular shape microchannel by two relaxation times on the basis of wall function approach. Vacuum 173, 109104 (2020). https://doi.org/10.1016/j.vacuum.2019.109104

    Article  ADS  CAS  Google Scholar 

  45. Nguyen, Q.; Ghahderijani, M.J.; Bahrami, M.; Ahangar, E.K.; D’Orazio, A.; Bach, Q.V.; Karimipour, A.: Develop Boltzmann equation to simulate non-Newtonian magneto-hydrodynamic nanofluid flow using power law magnetic Reynolds number. Math. Meth. App. Sci. (2020). https://doi.org/10.1002/mma.6513

    Article  Google Scholar 

  46. Ren, X.; Liu, F.; **n, Z.: A novel thermal lattice Boltzmann method for numerical simulation of natural convection of non-Newtonian fluids. Processes 11(8), 2326 (2023). https://doi.org/10.3390/pr11082326

    Article  CAS  Google Scholar 

  47. Kefayati, G.R.: Lattice Boltzmann simulation of natural convection in a square cavity with a linearly heated wall using nanofluid. Arab. J. Sci. Eng. 39, 2143–2156 (2014). https://doi.org/10.1007/s13369-013-0748-1

    Article  CAS  Google Scholar 

  48. Ahangar, E.K.; Izanlu, M.; Khakhian, S.D.; Mohamad, A.A.; Bach, Q.V.: Modified lattice Boltzmann solution for non-isothermal rarefied gas flow through microchannel utilizing BSR and second-order implicit schemes. J. Therm. Anal. Calorim. 144, 2525–2541 (2021). https://doi.org/10.1007/s10973-020-10129-8

    Article  CAS  Google Scholar 

  49. Ahangar, E.K.; Esfahani, J.A.; Ayani, M.B.: Sudden contraction effects in nanochannel cross section on the rarefied gas flow characteristics: LBM analysis. Eur. Phys. J. Plus 135, 818 (2020). https://doi.org/10.1140/epjp/s13360-020-00836-4

    Article  CAS  Google Scholar 

  50. Hasan, M.F.; Molla, M.M.; Siddiqa, S.; Khan, A.I.: Mesoscopic CUDA 3D MRT-LBM simulation of natural convection of power-law fluids in a differentially heated cubic cavity with a machine learning cross-validation. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-08464-7

    Article  Google Scholar 

  51. Ma, Y.; Rashidi, M.M.; Mohebbi, R.; Yang, Z.: Nanofluid natural convection in a corrugated solar power plant using the hybrid LBM-TVD method. Energy 199, 117402 (2020). https://doi.org/10.1016/j.energy.2020.117402

    Article  CAS  Google Scholar 

  52. Abchouyeh, M.A.; SolaymaniFard, O.; Mohebbi, R.; Sheremet, M.A.: Enhancement of heat transfer of nanofluids in the presence of sinusoidal side obstacles between two parallel plates through the lattice Boltzmann method. Int. J. Mech. Sci. 156, 159–169 (2019). https://doi.org/10.1016/j.ijmecsci.2019.03.035

    Article  Google Scholar 

  53. Ma, Y.; Rashidi, M.M.; Mohebbi, R.; Yang, Z.: Investigation of magnetohydrodynamics in Ag-TiO2/water hybrid nanofluid in a Shamse knot shaped cavity. Int Jour Num Meth Heat Fluid Flow. 31, 251–272 (2021). https://doi.org/10.1108/HFF-12-2019-0909

    Article  Google Scholar 

  54. Mohebbi, R.; Mehryan, S.A.M.; Izadi, M.; Mahian, O.: Natural convection of hybrid nanofluids inside a partitioned porous cavity for application in solar power plants. J. Therm. Anal. Calorim. 137, 1719–1733 (2019). https://doi.org/10.1007/s10973-019-08019-9

    Article  CAS  Google Scholar 

  55. Ma, Y.; Mohebbi, R.; Rashidi, M.M.; Yang, Z.; Sheremet, M.: Nanoliquid thermal convection in I-shaped multiple-pipe heat exchanger under magnetic field influence. Phys. A: Stat. Mech. 550, 124028 (2020). https://doi.org/10.1016/j.physa.2019.124028

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for this article.

Author information

Authors and Affiliations

Authors

Contributions

EKA contributed to conceptualization, methodology, software, validation, formal analysis, investigation, resources, data curation, writing—original draft, writing—review & editing, visualization, supervision, project administration.

Corresponding author

Correspondence to Ehsan Kamali Ahangar.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest to disclose.

Ethical approval

This article does not contain any experimental studies on humans and/or animals.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahangar, E.K. Transport Phenomena Study of Low-Prandtl-Number Fluid Flow Using Thermal Lattice Boltzmann Technique. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08786-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08786-0

Keywords

Navigation