Log in

Simulation Method for Curing Deformation of Composite Part Considering Tool–Part Interaction

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

For the assembly problems caused by the curing deformation of L-shaped composite structure, a simulation model of the curing deformation of composite part considering tool–part interaction was established. Firstly, the shear slip effect of the tool on the composite structure during curing process was characterized by setting the friction coefficient with the maximum shear stress. Secondly, the effects of composite anisotropy, material thermal expansion and contraction, and matrix chemical shrinkage on the curing deformation were considered. Finally, the cure hardening instantaneously linear elastic model was used to realize the curing deformation simulation calculation under the premise of effectively improving the computational efficiency. Then, the validity of the simulation model was verified by designing experiments of curing deformation of L-shaped structures with different thicknesses and different lay-up sequences. The experimental and simulation analysis results were compared with a maximum error of − 20.8% and an average error of − 7.35%. Results show that for L-shaped structural parts prepared by aluminum tool, the tool–part interaction exacerbates the curing deformation situation of the structure, and the structural stiffness plays an important role in this deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fan, S.; Zhang, J.; Wang, B.; Chen, J.; Yang, W.; Liu, W.; Li, Y.: A deep learning method for fast predicting curing process-induced deformation of aeronautical composite structures. Compos. Sci. Technol. 232, 109844 (2023)

    Article  CAS  Google Scholar 

  2. Meng, Q.; Li, Y.; Liu, X.; Chen, G.; Hao, X.: A novel physics-informed neural operator for thermochemical curing analysis of carbon-fibre-reinforced thermosetting composites. Compos. Struct. 321, 117197 (2023)

    Article  CAS  Google Scholar 

  3. Moretti, L.; Olivier, P.; Castanié, B.; Bernhart, G.: Experimental study and in-situ FBG monitoring of process-induced strains during autoclave co-curing, co-bonding and secondary bonding of composite laminates. Compos. Part. A-Appl. S. 142, 106224 (2021)

    Article  CAS  Google Scholar 

  4. Struzziero, G.; Teuwen, J.: A fully coupled thermo-mechanical analysis for the minimisation of spring- in and process time in ultra-thick components for wind turbine blades. Compos. Part. A Appl. Sci. 139, 106105 (2020)

    Article  CAS  Google Scholar 

  5. Yuan, Z.; Wang, Y.; Yang, G.; Tang, A.; Yang, Z.; Li, S.; Li, Y.; Song, D.: Evolution of curing residual stresses in composite using multi-scale method. Compos. Part B Eng. 155, 49–61 (2018)

    Article  CAS  Google Scholar 

  6. **ao, Y.; Li, D.; Qian, Z.; Li, Y.: An experimental and numerical study of curing deformation considering tool–part interaction for two-step curing tooling composite materials. J. Maunf. Process. 94, 435–453 (2023)

    Article  Google Scholar 

  7. Mobarakian, M.; Safarabadi, M.; Farahani, M.: Develo** a thermomechanical and thermochemical model for investigating the cooling rate effects on the distortion of unsymmetrical viscoelastic polymeric compo-site laminates. Polym. Test. 87, 106503 (2020)

    Article  CAS  Google Scholar 

  8. Albert, C.; Fernlund, G.: Spring-in and warpage of angled composite laminates. Compos. Sci. Technol. 62(14), 1895–1912 (2002)

    Article  CAS  Google Scholar 

  9. Svanberg, J.; Holmberg, J.: Prediction of shape distortions. Part II. Experimental validation and analysis of boundary conditions. Compos Part A Appl. Sci. 35, 723–734 (2004)

  10. Radford, D.; Rennick, T.: Separating sources of manufacturing distortion in laminated composites. J. Reinf. Plast. Comp. 19, 621–641 (2000)

    Article  CAS  Google Scholar 

  11. Takagaki, K.; Minakuchi, S.; Takeda, N.: Process-induced strain and distortion in curved composites. Part II: parametric study and application. Compos. Part. A Appl. Sci. 103, 219–229 (2017)

  12. Ding, A.; Wang, J.; Ni, A.; Li, S.: A new analytical solution for cure-induced spring-in of L-shaped composite parts. Compos. Sci. Technol. 171, 1–12 (2019)

    Article  CAS  Google Scholar 

  13. Bellini, C.; Sorrentino, L.; Polini, W.; Corrado, A.: Spring-in analysis of CFRP thin laminates: numerical and experimental results. Compos. Struct. 173, 17–24 (2017)

    Article  Google Scholar 

  14. Ren, M.; Wang, Q.; Cong, J.; Chang, X.: Study of one-dimensional cure simulation applicable conditions for thick laminates and its comparison with three-dimensional simulation. Sci. Eng. Compos. Mater. 25, 1197–1204 (2018)

    Article  CAS  Google Scholar 

  15. Yuan, Z.; Kong, L.; Gao, D.; Tong, X.; Feng, Y.; Yang, G.; Yang, Z.; Li, S.: Multi-objective approach to optimize cure process for thick composite based on multi-field coupled model with RBF surrogate model. Compos. Commun. 24, 100671 (2021)

    Article  Google Scholar 

  16. Çinar, K.; Öztürk, U.; Ersoy, N.; Wisnom, M.: Modelling manufacturing deformations in corner sections made of composite materials. J. Compos. Mater. 48(7), 799–813 (2014)

    Article  ADS  Google Scholar 

  17. Hui, X.; Xu, Y.; Zhang, W.: An integrated modeling of the curing process and transverse tensile damage of unidirectional CFRP composites. Compos. Struct. 263, 113681 (2021)

    Article  CAS  Google Scholar 

  18. Yoon, K.; Kim, J.: Induced distortion of carbon/epoxy curved laminates effect of thermal deformation and chemical shrinkage on the process. J. Compos. Mater. 35, 253–263 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Wang, Q.; Li, T.; Yang, X.; Wang, K.; Wang, B.; Ren, M.: Prediction and compensation of process-induced distortions for L-shaped 3D woven composites. Compos. Part. A Appl. Sci. 141, 106211 (2021)

    Article  Google Scholar 

  20. Zhi, J.; Yang, B.; Li, Y.; Tay, T.; Tan, V.: Multiscale thermo-mechanical analysis of cure-induced deformation in composite laminates using Direct FE2. Compos. Part. A Appl. Sci. 173, 107704 (2023)

    Article  Google Scholar 

  21. Yuan, Z.; Aitharaju, V.; Fish, J.: A coupled thermo-chemo-mechanical reduced-order multiscale model for predicting process-induced distortions, residual stresses, and strength. Int. J. Numer. Methods. Eng. 121(7), 1440–1455 (2020)

    Article  MathSciNet  Google Scholar 

  22. Vermes, B.; Czigany, T.: Thermally induced mechanical work and warpage compensation of asymmetric laminates. Compos. Struct. 295, 115847 (2022)

    Article  Google Scholar 

  23. Gao, Y.; Ye, J.; Yuan, Z.; Ling, Z.; Zhou, Y.; Lin, Z.; Dong, J.; Wang, H.; Peng, H.: Optimization strategy for curing ultra-thick composite laminates based on multi-objective genetic algorithm. Compos. Commun. 31, 101115 (2022)

    Article  Google Scholar 

  24. Kalariya, Y.; Beemaraj, S.; Salvi, A.: Design and optimization of manufacturing process of polymer composites through multiscale cure analysis and NSGA-II. Integr. Mater. Manuf. Innov. (2023). https://doi.org/10.1007/s40192-023-00316-4.

  25. **ao, Y.; Li, D.; Ji, K.; Li, Y.: Research and application progress of curing tooling technology for large composite aeronautical components. Acta Materiae Compositae Sinica. 39(3), 907–925 (2022)

    Google Scholar 

  26. Feng, Y.; Han, Z.; Li, R.; Zhang, W.: Numerical modeling for curing of unidirectional carbon fiber reinforced polymer based on micromechanics in Laplace domain. Compos. Sci. Technol. 228, 109637 (2022)

    Article  CAS  Google Scholar 

  27. Kawagoe, Y.; Kawai, K.; Kumagai, Y.; Shirasu, K.; Kikugawa, G.; Okabe, T.: Multiscale modeling of process-induced residual deformation on carbon-fiber-reinforced plastic laminate from quantum calculation to laminate scale finite-element analysis. Mech. Mater. 170, 104332 (2022)

    Article  Google Scholar 

  28. Kim, D.; Kim, S.; Lee, I.: Evaluation of curing process-induced deformation in plain woven composite structures based on cure kinetics considering various fabric parameters. Compos. Struct. 287, 115379 (2022)

    Article  CAS  Google Scholar 

  29. Tang, W.; Xu, Y.; Hui, X.; Zhang, W.: Multi-objective optimization of curing profile for autoclave processed composites: simultaneous control of curing time and process-induced defects. Polymers-basel. 14, 2815 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ding, A.; Fang, S.; Li, Xu.; Sun, L.; Wang, J.; Chen, H.: Experimental and numerical investigation of part interaction on the process-induced distortions in composite structures. Compos. Struct. 279, 114871 (2022)

    Article  Google Scholar 

  31. Peng, X.; Xu, J.; Cheng, Y.; Zhang, L.; Yang, J.; Li, Y.: An analytical model for cure-induced deformation of composite laminates. Polymers-basel. 14, 2903 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takagaki, K.; Minakuchi, S.; Takeda, N.: Process-induced strain and distortion in curved composites. Part I: Development of fiber-optic strain monitoring technique and analytical methods. Compos. Part. A Appl. Sci. 103, 236–251 (2017)

  33. Yuan, Z.; Yang, G.; Yang, Z.; Feng, Y.; Li, S.; Li, Y.; Tong, X.; Song, D.: Process-induced deformation of L-shaped laminates analysis of tool–part interaction. Mech. Compos. Mater. 56(6), 789–804 (2021)

    Article  ADS  Google Scholar 

  34. Çinar, K.; Guven, I.; Ersoy, N.: Effect of residual stress on the bending response of L-shaped composite laminates. Compos. Struct. 246, 112425 (2020)

    Article  Google Scholar 

  35. Çinar, K.; Ersoy, N.: 3D finite element model for predicting manufacturing distortions of composite parts. J. Compos. Mater. 50(27), 3791–3807 (2016)

    Article  ADS  Google Scholar 

  36. Sun, L.; Liu, C.; Xu, X.; Zhao, Z.; Wang, J.; Li, Y.: An integrated approach for rapidly and precisely predicting the spring-in of U-shaped composite parts with ply drop-offs. Thin. Wall. Struct. 184, 110473 (2023)

    Article  Google Scholar 

  37. Traiforos, N.; Matveev, M.; Chronopoulos, D.; Turner, T.: Spring-in of composite L-shape specimens: an experimental and numerical investigation. Compos. Struct. 310, 116772 (2023)

    Article  CAS  Google Scholar 

  38. Bogetti, T.; Gillespie, J.: Two-dimensional cure simulation of thick thermosetting composites. J. Compos. Mater. 25, 239–273 (1991)

    Article  ADS  CAS  Google Scholar 

  39. Chen, X.; **ng, L.; Zhou, Z.: Simulation and modeling of polymeric composite temperature change during manufactory process. J. Aeronaut. Materi. 29(2), 61–65 (2009)

    ADS  Google Scholar 

  40. Li, X.; Wang, J.; Li, S.; Ding, A.: Cure-induced temperature gradient in laminated composite plate: numerical simulation and experimental measurement. Compos. Struct. 253(6), 112822 (2020)

    Article  MathSciNet  Google Scholar 

  41. Abaqus analysis user’s guide version 6.17. Dassault Systemes Simulia Corp (2017)

  42. Mezeix, L.; Seman, A.; Nasi, M.; Aminanda, Y.; Rivai, A.; Castanie, B.; Olivier, P.; Ali, K.: Spring-back simulation of unidirectional carbon/epoxy flat laminate composite manufactured through autoclave process. Compos. Struct. 124, 196–205 (2015)

    Article  Google Scholar 

  43. Bapanapalli, S.; Smith, L.: A linear finite element model to predict processing-induced distortion in FRP laminates. Compos. Part. A Appl. Sci. 36(12), 1666–1674 (2005)

    Article  Google Scholar 

  44. Yuan, Z.; Wang, Y.; Peng, X.; Wang, J.; Wei, S.: An analytical model on through-thickness stresses and warpage of composite laminates due to tool–part interaction. Compos. Part B Eng. 91, 408–413 (2016)

    Article  CAS  Google Scholar 

  45. Kaushik, V.; Raghavan, J.: Experimental study of tool–part interaction during autoclave processing of thermoset polymer composite structures. Compos. Part. A Appl. S. 41, 1210–1218 (2010)

    Article  Google Scholar 

  46. Twigg, G.; Poursartip, A.; Fernlund, G.: Tool–part interaction in composites processing. Part I: experimental investigation and analytical model. Compos. Part. A Appl. Sci. 35, 121–133 (2004)

  47. Moure, M.; Otero, F.; García-Castillo, S.; Sánchez-Sáez, S.; Barbero, E.; Barbero, E.B.: Damage evolution in open-hole laminated composite plates subjected to in-plane loads. Compos. Struct. 133, 1048–1057 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports by China Postdoctoral Science Foundation (2022MD713799) and key research and development program in Shaanxi Province (2023-YBGY-387, 2022JM-244, 2022JM-197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyi Yuan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Wei, F., Kong, L. et al. Simulation Method for Curing Deformation of Composite Part Considering Tool–Part Interaction. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08694-9

Keywords

Navigation