Log in

Design and Optimization of MOS Capacitor based Radiation Sensor for Space Applications

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a unique sensor for detecting total ionizing dose (TID) on metal–oxide–semiconductor (MOS) devices. The proposed capacitive radiation sensor is based on commercial 180 nm complementary metal-oxide semiconductor (CMOS) technology. The sensor parameters of 180 nm length (L) and 20 nm oxide thickness (TOX) have been finalized based on simulation and mathematical analysis. Low and high radiation doses ranging from 100 rad to 1 Mrad are used to characterize it. The sensor's sensitivity for 0–10 krad is 20 mV/krad, 10 krad–100 krad is 3.9 mV/krad, and 100 krad–1 Mrad is 0.6 mV/krad when threshold shift is considered into account. Analysis of fixed oxide charge and interface trap charge generation due to ionizing radiation is done. Because interface traps are crucial to device performance, this device is evaluates using traps between 1 E06 cm−3 and 1 E14 cm−3 for realistic performance. Every interface trap exhibits a threshold voltage (VT) shift. Visual technology computer-aided design (TCAD) simulator was used to build, study, and evaluate a capacitive radiation sensor that might be used as a dosimeter for TID monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Babcock, J.A.; Cressler, J.D.; Vempati, L.S.; Clark, S.D.; Jaeger, R.C.; Harame, D.L.: Ionizing radiation tolerance of high-performance SiGe HBT’s grown by UHV/CVD. IEEE Trans. Nucl. Sci. 42(6), 1558–1566 (1995)

    Article  Google Scholar 

  2. Ge, X., et al.: Total-ionization-dose characterization of a radiation-hardened mixed-signal microcontroller SoC in 180 nm CMOS technology for nanosatellites. Microelectron. J. 87, 65–72 (2019). https://doi.org/10.1016/j.mejo.2019.04.007

    Article  Google Scholar 

  3. Tang, A.; Kim, Y.; Chang, M.-C.F.: Logic-I/O threshold comparing -dosimeter in radiation insensitive deep-sub-micron CMOS. IEEE Trans. Nucl. Sci. 63(2), 1247–1250 (2016). https://doi.org/10.1109/TNS.2016.2528219

    Article  Google Scholar 

  4. Kumar, M.; Ubhi, J.S.; Basra, S.; Chawla, A.; Jatana, H.S.: Total ionizing dose hardness analysis of transistors in commercial 180 nm CMOS technology. Microelectron. J. 115, 105182 (2021). https://doi.org/10.1016/j.mejo.2021.105182

    Article  Google Scholar 

  5. Petrov, A.S.; Tapero, K.I.; Ulimov, V.N.: Influence of temperature and dose rate on the degradation of BiCMOS operational amplifiers during total ionizing dose testing. Microelectron. Reliab. 54(9), 1745–1748 (2014). https://doi.org/10.1016/j.microrel.2014.07.091

    Article  Google Scholar 

  6. Gonella, L., et al.: Total Ionizing Dose effects in 130-nm commercial CMOS technologies for HEP experiments. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectr. Detect. Assoc. Equip. 582(3), 750–754 (2007). https://doi.org/10.1016/j.nima.2007.07.068

    Article  Google Scholar 

  7. Yang, X.; Wang, Y.; Du, B.; Yu, C.: Total dose radiation effects of hybrid bulk/SOI CMOS active pixel with buried channel SOI source follower. Microelectron. J. 45(4), 477–481 (2014). https://doi.org/10.1016/j.mejo.2014.02.021

    Article  Google Scholar 

  8. Liao, X.; Liu, Y.; Xu, C.; Wang, C.; Yang, Y.: Comparison in radiation tolerance between FLR planar junction termination and positive bevel edge termination for power diodes. Microelectron. J. 128, 105565 (2022). https://doi.org/10.1016/j.mejo.2022.105565

    Article  Google Scholar 

  9. Prinzie, J.; Simanjuntak, F.M.; Leroux, P.; Prodromakis, T.: Low-power electronic technologies for harsh radiation environments. Nat. Electron. 4(4), 4 (2021). https://doi.org/10.1038/s41928-021-00562-4

    Article  Google Scholar 

  10. Thabayneh, K.M.: Measurement of natural radioactivity and radon exhalation rate in granite samples used in palestinian buildings. Arab. J. Sci. Eng. 38(1), 201–207 (2013). https://doi.org/10.1007/s13369-012-0391-2

    Article  Google Scholar 

  11. **, S.; Zheng, Q.; Lu, W.; Cui, J.; Wei, Y.; Guo, Q.: Modeling of TID-induced leakage current in ultra-deep submicron SOI NMOSFETs. Microelectron. J. 102, 104829 (2020). https://doi.org/10.1016/j.mejo.2020.104829

    Article  Google Scholar 

  12. Chen, R.M., et al.: Effects of total-ionizing-dose irradiation on SEU- and SET-induced soft errors in Bulk 40-nm sequential circuits. IEEE Trans. Nucl. Sci. 64(1), 471–476 (2017). https://doi.org/10.1109/TNS.2016.2614963

    Article  Google Scholar 

  13. Bheesayagari, C.; Gorreta, S.; Pons-Nin, J.; Domínguez-Pumar, M.: Second order sigma-delta control of charge trap** for MOS capacitors. Microelectron. Reliab. 76–77, 635–639 (2017). https://doi.org/10.1016/j.microrel.2017.06.096

    Article  Google Scholar 

  14. Jafari, H.; Feghhi, S.A.H.; Boorboor, S.: The effect of interface trapped charge on threshold voltage shift estimation for gamma irradiated MOS device. Radiat. Meas. 73, 69–77 (2015). https://doi.org/10.1016/j.radmeas.2014.12.008

    Article  Google Scholar 

  15. Bonaldo, S., et al.: Total-ionizing-dose effects and low-frequency noise in 16-nm InGaAs FinFETs With HfO2/Al2O3 dielectrics. IEEE Trans. Nucl. Sci. 67(1), 210–220 (2020). https://doi.org/10.1109/TNS.2019.2957028

    Article  Google Scholar 

  16. Park, J.-Y., et al.: Local electro-thermal annealing for repair of total ionizing dose-induced damage in gate-all-around MOSFETs. IEEE Electron Device Lett. 37(7), 843–846 (2016). https://doi.org/10.1109/LED.2016.2574341

    Article  Google Scholar 

  17. Zalte, M.B.; Kumar, V.; Surya, S.G.; Baghini, M.S.: A solution processed amorphous InGaZnO thin-film transistor-based dosimeter for gamma-ray detection and its reliability. IEEE Sens. J. 21(9), 10667–10674 (2021). https://doi.org/10.1109/JSEN.2021.3061955

    Article  Google Scholar 

  18. Anjankar, S. & Dhavse, R.: Comparison of total ionizing dose effect on tolerance of SCL 180 nm bulk and SOI CMOS using TCAD simulation. In Emerging Technology Trends in Electronics, Communication and Networking, R. Dhavse, V. Kumar, and S. Monteleone, Eds., in Lecture Notes in Electrical Engineering. Singapore: Springer Nature, 2023, pp. 49–62. doi: https://doi.org/10.1007/978-981-19-6737-5_5.

  19. Anjankar, S. & Dhavse, R.: Radiation Sensor Design for Mitigation of Total Ionizing Dose Effects In Advances in VLSI and Embedded Systems, A. D. Darji, D. Joshi, A. Joshi, and R. Sheriff, (eds), in Lecture Notes in Electrical Engineering. Singapore: Springer Nature, pp. 267–279 (2023). doi: https://doi.org/10.1007/978-981-19-6780-1_21.

  20. Li, Y.; Zhang, Y.; Cao, R.; Liu, X.; Lv, C.; Liu, J.: Redundancy design of modular DC solid-state transformer based on reliability and efficiency evaluation. CPSS Trans. Power Electron. Appl. 6(2), 115–126 (2021). https://doi.org/10.24295/CPSSTPEA.2021.00010

    Article  Google Scholar 

  21. Liu, F., et al.: Radiation-hardened CMOS negative voltage reference for aerospace application. IEEE Trans. Nucl. Sci. 64(9), 2505–2510 (2017). https://doi.org/10.1109/TNS.2017.2733738

    Article  MathSciNet  Google Scholar 

  22. Garcia-Astudillo, L.A.; Entrena, L.; Lindoso, A.; Martín, H.; Martin-Holgado, P.; Garcia-Valderas, M.: Analyzing reduced precision triple modular redundancy under proton irradiation. IEEE Trans. Nucl. Sci. 69(3), 470–477 (2022). https://doi.org/10.1109/TNS.2022.3152088

    Article  Google Scholar 

  23. Ebrahimi, M.; Miremadi, S.G.; Asadi, H.; Fazeli, M.: Low-cost scan-chain-based technique to recover multiple errors in TMR systems. IEEE Trans. Very Large Scale Integr. VLSI Syst. 21(8), 1454–1468 (2013). https://doi.org/10.1109/TVLSI.2012.2213102

    Article  Google Scholar 

  24. González Ramírez, D.; Lalchand Khemchandani, S.; del Pino, J.; Mayor-Duarte, D.; San Miguel-Montesdeoca, M.; Mateos-Angulo, S.: Single event transients mitigation techniques for CMOS integrated VCOs. Microelectron. J. 73, 37–42 (2018). https://doi.org/10.1016/j.mejo.2018.01.005

    Article  Google Scholar 

  25. “RESPOND Projects.” Accessed: Nov. 24, (2022). [Online]. Available: https://www.isro.gov.in/RESPONDProjects.html

  26. “Drs2 0018sl Scl Manual|Mosfet | Spice – Documents. Accessed: May 29, (2018). [Online]. Available: https://usdocument.net/the-philosophy-of-money.html?utm_source=drs2-0018sl-scl-manual-mosfet-spice

  27. Anjankar, S.; Dhavse, R.: Innovative leakage stabilization system for mitigation of ionizing radiation-induced effects. IEEE Sens. Lett. 7(6), 1–4 (2023). https://doi.org/10.1109/LSENS.2023.3282593

    Article  Google Scholar 

  28. Manikanthababu, N., et al.: Ion irradiation-induced interface mixing and the charge trap profiles investigated by in situ electrical measurements in Pt/Al2O3/β-Ga2O3 MOSCAPs. IEEE Trans. Electron Devices 70(7), 3711–3717 (2023). https://doi.org/10.1109/TED.2023.3271281

    Article  Google Scholar 

  29. Fleetwood, D.M.: Effects of bias and temperature on interface-trap annealing in MOS and linear bipolar devices. IEEE Trans. Nucl. Sci. 69(3), 587–608 (2022). https://doi.org/10.1109/TNS.2022.3147771

    Article  Google Scholar 

  30. “A radiation-hardening Ta/Ta2O5-x/Al2O3/InGaZnO4 memristor for harsh electronics: Applied Physics Letters 113(12).” Accessed: Apr. 11, 2023. [Online]. Available: https://aip.scitation.org/doi/https://doi.org/10.1063/1.5045649

  31. Ho, C.-H., et al.: Device process and circuit application interaction for harsh electronics: Hf–In–Zn–O thin film transistors as an example. IEEE Electron Device Lett. 38(8), 1039–1042 (2017). https://doi.org/10.1109/LED.2017.2720186

    Article  Google Scholar 

  32. “Radiation-Tolerant p-Type SnO Thin-Film Transistors | IEEE Journals & Magazine | IEEE Xplore.” Accessed: Apr. 11, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/8703828

  33. Raval, H.N.; Rao, V.R.: OFET sensors with poly 3-hexylthiophene and pentacene as channel materials for ionizing radiation. MRS Proc. 14, 1383 (2012). https://doi.org/10.1557/opl.2012.184

    Article  Google Scholar 

  34. Zhang, Y.; Hu-Guo, C.; Husson, D.; Higueret, S.; Lê, T.-D.; Hu, Y.: Design of a monolithic CMOS sensor for high efficiency neutron counting. Microelectron. J. 43(11), 730–736 (2012). https://doi.org/10.1016/j.mejo.2012.07.012

    Article  Google Scholar 

  35. Campbell, K.A.; Anderson, C.M.: Phase-change memory devices with stacked Ge-chalcogenide/Sn-chalcogenide layers. Microelectron. J. 38(1), 52–59 (2007). https://doi.org/10.1016/j.mejo.2006.09.012

    Article  Google Scholar 

  36. Pikhay, E.; Roizin, Y.; Nemirovsky, Y.: Ultra-low power consuming direct radiation sensors based on floating gate structures. J. Low Power Electron. Appl. 7(3), 20 (2017). https://doi.org/10.3390/jlpea7030020

    Article  Google Scholar 

  37. Podlepetsky, B.I.: Total ionizing dose effects in hydrogen sensors based on MISFET. IEEE Trans. Nucl. Sci. 63(4), 2095–2105 (2016)

    Article  Google Scholar 

  38. Mousoulis, C., et al.: Characterization of fading of a MOS-based sensor for occupational radiation dosimetry. 2016 EEE Sens. 12, 1–3 (2016). https://doi.org/10.1109/ICSENS.2016.7808645

    Article  Google Scholar 

  39. “Cogenda | Software Downloads.” Accessed: Oct. 27, (2022). [Online]. Available: https://www.cogenda.com/article/download

  40. Genius, “Device Simulator, Version 1.9. 0.” Reference Manual, (2008).

  41. Anjum, A.; Vinayakprasanna, N.H.; Pradeep, T.M.; Pushpa, N.; Krishna, J.B.M.; Gnana Prakash, A.P.: A comparison of 4 MeV Proton and Co-60 gamma irradiation induced degradation in the electrical characteristics of N-channel MOSFETs. Nucl. Instrum. Methods Phys Res. Sect. B. Beam Interact. Mater. At. 379, 265–271 (2016). https://doi.org/10.1016/j.nimb.2016.04.023

    Article  Google Scholar 

  42. Yu, T.; **, C.G.; Dong, Y.J.; Cao, D.; Zhuge, L.J.; Wu, X.M.: Temperature dependence of electrical properties for MOS capacitor with HfO2/SiO2 gate dielectric stack. Mater. Sci. Semicond. Process. 16(5), 1321–1327 (2013). https://doi.org/10.1016/j.mssp.2012.09.013

    Article  Google Scholar 

  43. Oldham, T.R.; McLean, F.B.: Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci. 50(3), 483–499 (2003). https://doi.org/10.1109/TNS.2003.812927

    Article  Google Scholar 

  44. Schwank, J.R., et al.: Correlation between Co-60 and X-ray radiation-induced charge buildup in silicon-on-insulator buried oxides. IEEE Trans. Nucl. Sci. 47(6), 2175–2182 (2000)

    Article  Google Scholar 

  45. Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P.: SRIM The stop** and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam. Interact. Mater. At. 268(11), 1818–1823 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  Google Scholar 

  46. Li, L., et al.: A study on ionization damage effects of anode-short MOS-controlled thyristor. IEEE Trans. Nucl. Sci. 67(9), 2062–2072 (2020). https://doi.org/10.1109/TNS.2020.3012766

    Article  Google Scholar 

  47. Chauhan, R.K.; Chakrabarti, P.: Effect of ionizing radiation on MOS capacitors. Microelectron. J. 33(3), 197–203 (2002). https://doi.org/10.1016/S0026-2692(01)00152-5

    Article  Google Scholar 

  48. Arshak, K.; Arshak, A.; Zleetni, S.; Korostynska, O.: Thin and thick films of metal oxides and metal phthalocyanines as gamma radiation dosimeters. IEEE Trans. Nucl. Sci. 51(5), 2250–2255 (2004). https://doi.org/10.1109/TNS.2004.834718

    Article  Google Scholar 

  49. Sze, S. M.: VLSI Technology. McGraw-Hill, (1983).

  50. Radiation and bias switch-induced charge dynamics in Al2O3-based metal-oxide-semiconductor structures: J. Appl. Phys. 116(17). Accessed: May 21, 2022. [Online].

  51. Rizzo, M.; Brucoli, M.; Danzeca, S.; Masi, A.; Pineda, À.; Servera Mas, B.: An enhanced sensitivity operation mode for floating gate dosimeters. IEEE Trans. Nucl. Sci. 69(8), 1876–1883 (2022). https://doi.org/10.1109/TNS.2022.3185397

    Article  Google Scholar 

  52. Kaymaz, A.: Ionizing radiation response of bismuth titanate-based metal-ferroelectric-semiconductor (MFS) type capacitor. Microelectron. Reliab. 133, 114546 (2022). https://doi.org/10.1016/j.microrel.2022.114546

    Article  Google Scholar 

  53. Xuan, Y. et al. 3D MOS-capacitor-based ionizing radiation sensors In 2017 IEEE Sensors, Oct. 2017, pp. 1–3. doi: https://doi.org/10.1109/ICSENS.2017.8234043.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham C. Anjankar.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the no financial interests/personal relationships which may be considered as potential competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjankar, S.C., Dhavse, R. Design and Optimization of MOS Capacitor based Radiation Sensor for Space Applications. Arab J Sci Eng 49, 7013–7028 (2024). https://doi.org/10.1007/s13369-023-08673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08673-0

Keywords

Navigation