Log in

Semantic Segmentation-Based Building Extraction in Urban Area Using Memory-Efficient Residual Dilated Convolutional Network

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The satellite images have been employed in building extraction to aid urban planning, tax assessment, disaster management, etc. The number of buildings and building types is huge in urban areas, which puts more burden on human experts to extract buildings in satellite images. Hence, building extraction from satellite images using deep learning (DL) has become an emerging research domain in recent decades. The performance of the DL model depends on training parameters, the depth of the model, and the memory required to preserve the model. In this work, a Memory-Efficient Residual Dilated Convolutional Network (MRDCN) has been proposed to extract buildings effectively with reduced number of training parameters and with lesser memory consumption. The model is trained using the Massachusetts buildings dataset and implemented using PyTorch in Kaggle platform. The trained model has been tested using both Massachusetts and AIRS Dataset. The simulation results prove that the proposed model uses 31.64% less memory than the existing dilated residual network. It is evident from the results that the MRDCN is able to extract the buildings with better accuracy and an Intersection of Union with minimal memory consumption than the existing standard UNet, SegNet, ResUNet, and Dilated ResUNet models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P.: Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 55(2), 645–657 (2016). https://doi.org/10.1109/TGRS.2016.2612821

    Article  Google Scholar 

  2. Bachofer, F.; Braun, A.; Adamietz, F.; Murray, S.; d’Angelo, P.; Kyazze, E.; Mumuhire, A.P.; Bower, J.: Building stock and building typology of Kigali, Rwanda. Data 4(3), 105 (2019). https://doi.org/10.3390/data4030105

    Article  Google Scholar 

  3. **, X.: Segmentation-based image processing system. US Patent, 20 (2009).

  4. Huang, B.; Zhao, B.; Song, Y.: Urban land-use map** using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens. Environ. 214, 73–86 (2018). https://doi.org/10.1016/j.rse.2018.04.050

    Article  Google Scholar 

  5. Li, Y.; Huang, X.; Liu, H.: Unsupervised deep feature learning for urban village detection from high-resolution remote sensing images. Photogramm. Eng. Remote Sens. 83(8), 567–579 (2017). https://doi.org/10.14358/PERS.83.8.567

    Article  Google Scholar 

  6. Banan, A.; Nasiri, A.; Taheri-Garavand, A.: Deep learning-based appearance features extraction for automated carp species identification. Aquacult. Eng. 89, 102053 (2020). https://doi.org/10.1016/j.aquaeng.2020.102053

    Article  Google Scholar 

  7. Chen, C.; Zhang, Q.; Kashani, M.H.; Jun, C.; Bateni, S.M.; Band, S.S.; Dash, S.S.; Chau, K.-W.: Forecast of rainfall distribution based on fixed sliding window long short-term memory. Eng. Appl. Comput. Fluid Mech. 16, 248–261 (2022). https://doi.org/10.1080/19942060.2021.2009374

    Article  Google Scholar 

  8. Lin, H.; Gharehbaghi, A.; Zhang, Q.; Band, S.S.; Pai, H.T.; Chau, K.-W.; Mosavi, A.: Time series-based groundwater level forecasting using gated recurrent unit deep neural networks. Eng. Appl. Comput. Fluid Mech. 16, 1655–1672 (2022). https://doi.org/10.1080/19942060.2022.2104928

    Article  Google Scholar 

  9. Xu, Y.; **e, Z.; Feng, Y.; Chen, Z.: Road extraction from high-resolution remote sensing imagery using deep learning. Remote Sens. 10(9), 1461 (2018). https://doi.org/10.3390/rs10091461

    Article  Google Scholar 

  10. Liu, Y.; Zhang, Z.; Zhong, R.; Chen, D.; Ke, Y.; Peethambaran, J.; Chen, C.; Sun, L.: Multilevel building detection framework in remote sensing images based on convolutional neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(10), 3688–3700 (2018). https://doi.org/10.1109/JSTARS.2018.2866284

    Article  Google Scholar 

  11. Milletari, F.; Navab, N. and Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth Int Conf on 3D vision (3DV), pp. 565–571 (2016)

  12. Dixit, M.; Chaurasia, K.; Mishra, V.K.: Dilated-ResUnet: a novel deep learning architecture for building extraction from medium resolution multi-spectral satellite imagery. Expert Syst. Appl. 184, 115530 (2021). https://doi.org/10.1016/j.eswa.2021.115530

    Article  Google Scholar 

  13. Guercke, R.; Sester, M.: Building footprint simplification based on hough transform and least squares adjustment. In: Proceedings of the 14th Workshop of the ICA commission on Generalisation and Multiple Representation, Paris, France, 30 (2011).

  14. Ronneberger, O.; Fischer, P.; Brox, T.: UNet: convolutional networks for biomedical image segmentation. In: MICCAI 2015: 18th Int Conf Med Image Comput Comput Assist Interv, Munich, Germany Part III 18, pp. 234–241 (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  15. Badrinarayanan, V.; Kendall, A.; Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017). https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  16. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of IEEE Comput Soc Conf Comput Vis Pattern Recognit, 2117–2125 (2017). https://doi.org/10.1109/CVPR.2017.106

  17. Pinheiro, P.O.; Collobert, R.; Dollár, P.: Learning to segment object candidates. Advances in Neural Information Processing Systems, 28 (2015).

  18. Bai, M.; Urtasun R.: Deep watershed transform for instance segmentation. In: Proceedings of IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. pp. 5221–5229 (2017).https://doi.org/10.1109/CVPR.2017.305

  19. Prathap, G.; Afanasyev, I.: Deep learning approach for building detection in satellite multispectral imagery. Int. J. Intell. Syst. (IS) (2018). https://doi.org/10.1109/IS.2018.8710471

    Article  Google Scholar 

  20. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.: Mask R-CNN. In: Proc. IEEE Int. Conf. Comput. Vis., pp. 2961–2969 (2017). https://doi.org/10.1109/ICCV.2017.322

  21. Hu, J.; Chen, W.; Li, X.; He, X.: Roof confusion removal for accurate vegetation extraction in the urban environment. In: Int Workshop on Earth Obs and Remote Sens Appl, pp. 1–7. IEEE (2008). https://doi.org/10.1109/EORSA.2008.4620309

  22. Yang, J.; Wang, Y.H.: Towards automatic building extraction variational level set model using prior shape knowledge. IEEE Int. Conf. Signal Image Process. Appl. (2012). https://doi.org/10.1109/IASP.2012.6424990

    Article  Google Scholar 

  23. Zha, Y.; Gao, J.; Ni, S.: Use of normalized difference built-up index in automatically map** urban areas from TM imagery. Int. J. Remote Sens. 24(3), 583–594 (2003). https://doi.org/10.1080/01431160304987

    Article  Google Scholar 

  24. Kumar, A.; Pandey, A.C.; Jeyaseelan, A.T.: Built-up and vegetation extraction and density map** using WorldView-II. Geocarto Int. 27(7), 557–568 (2012). https://doi.org/10.1080/10106049.2012.657695

    Article  Google Scholar 

  25. Huang, X.; Yuan, W.; Li, J.; Zhang, L.: A new building extraction postprocessing framework for high-spatial-resolution remote-sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(2), 654–668 (2016). https://doi.org/10.1109/JSTARS.2016.2587324

    Article  Google Scholar 

  26. Khatriker, S.; Kumar, M.: Building footprint extraction from high resolution satellite imagery using segmentation. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. ISPRS Arch. 42, 123–128 (2018). https://doi.org/10.5194/isprs-archives-XLII-5-123-2018

    Article  Google Scholar 

  27. Hu, L.; Zheng, J.; Gao, F.: A building extraction method using shadow in high resolution multispectral images. Int. Geosci. Remote Sens. Symp. (IGARSS) 1862, 1865 (2011). https://doi.org/10.1109/IGARSS.2011.6049486

    Article  Google Scholar 

  28. Shi, W.; Mao, Z.; Liu, J.: Building extraction from high-resolution remotely sensed imagery based on multi-subgraph matching. J. Indian Soc. Remote Sens. 46, 2003–2013 (2018). https://doi.org/10.1007/s12524-018-0868-x

    Article  Google Scholar 

  29. Gavankar, N.L.; Ghosh, S.K.: Automatic building footprint extraction from high-resolution satellite image using mathematical morphology. Eur. J. Remote Sens. 51, 182–193 (2018). https://doi.org/10.1080/22797254.2017.1416676

    Article  Google Scholar 

  30. Turlapaty, A.; Gokaraju, B.; Du, Q.; Younan, N.H.; Aanstoos, J.V.: A hybrid approach for building extraction from spaceborne multi-angular optical imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(1), 89–100 (2012). https://doi.org/10.1109/JSTARS.2011.2179792

    Article  Google Scholar 

  31. Avudaiammal, R.; Elaveni, P.; Selvan, S.; Rajangam, V.: Extraction of buildings in urban area for surface area assessment from satellite imagery based on morphological building index using SVM classifier. J. Indian Soc. Remote Sens. 48, 1325–1344 (2020). https://doi.org/10.1007/s12524-020-01161-0

    Article  Google Scholar 

  32. Senaras, C.; Ozay, M.; Vural, F.T.Y.: Building detection with decision fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(3), 1295–1304 (2013)

    Article  Google Scholar 

  33. Manno-Kovacs, A.; Sziranyi, T.: Orientation-selective building detection in aerial images. ISPRS J. Photogramm. Remote Sens. 108, 94–112 (2015)

    Article  Google Scholar 

  34. Holloway, J.; Mengersen, K.: Statistical machine learning methods and remote sensing for sustainable development goals: a review. Remote Sens. 10(9), 1365 (2018). https://doi.org/10.3390/rs10091365

    Article  Google Scholar 

  35. Mo, Y.; Wu, Y.; Yang, X.; Liu, F.; Liao, Y.: Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing 493, 626–646 (2022)

    Article  Google Scholar 

  36. Zhu, X.X.; Tuia, D.; Mou, L.; **a, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F.: Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Trans. Geosci. Remote Sens. 5(4), 8–36 (2017). https://doi.org/10.1109/MGRS.2017.2762307

    Article  Google Scholar 

  37. Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386

    Article  Google Scholar 

  38. Simonyan, K.; Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ar**v:1409.1556 (2014)

  39. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conf on Artificial Intelligence, vol. 31 (2017). https://doi.org/10.1609/aaai.v31i1.11231

  40. He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  41. Huang, X.; Zhang, L.: A Multidirectional and multiscale morphological index for automatic building extraction from multispectral GeoEye-1 imagery. Photogramm. Eng. Remote Sens. 77(7), 721–732 (2011). https://doi.org/10.14358/PERS.77.7.721

    Article  Google Scholar 

  42. Chen, B.; Qi, X.; Wang, Y.; Zheng, Y.; Shim, H.J.; Shi, Y.-Q.: An improved splicing localization method by fully convolutional networks. IEEE Access 6, 69472–69480 (2018)

    Article  Google Scholar 

  43. Shao, Z.; Tang, P.; Wang, Z.; Saleem, N.; Yam, S.: Sommai, Chatpong: BRRNet: a fully convolutional neural network for automatic building extraction from high-resolution remote sensing images. Remote Sens. 12(6), 1050 (2020)

    Article  Google Scholar 

  44. Yi, Y.; Zhang, Z.; Zhang, W.; Zhang, C.; Li, W.; Zhao, T.: Semantic segmentation of urban buildings from VHR remote sensing imagery using a deep convolutional neural network. Remote Sens. 11(15), 1774 (2019)

    Article  Google Scholar 

  45. Wei, S.; Ji, S.; Meng, L.: Toward automatic building footprint delineation from aerial images using CNN and regularization. IEEE Trans. Geosci. Remote Sens. 58(3), 2178–2189 (2019)

    Article  Google Scholar 

  46. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890 (2017)

  47. Lin, G.; Milan, A.; Shen, C., Reid, I.: Refinenet: multi-path refinement networks for high-resolution semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1925–1934 (2017)

  48. Wu, H.; Zhang, J.; Huang, K.; Liang, K.; Yu, Y.: Fastfcn: rethinking dilated convolution in the backbone for semantic segmentation. ar**v:1903.11816 (2019)

  49. Xu, Y.; Wu, L.; **e, Z.; Chen, Z.: Building extraction in very high-resolution remote sensing imagery using deep learning and guided filters. Remote Sens. 10(1), 144 (2018). https://doi.org/10.3390/rs10010144

    Article  Google Scholar 

  50. Duan,Y.; Sun, L.: Buildings extraction from remote sensing data using deep learning method based on improved UNet network. In: Int Geosci Remote Sens. Symp. pp. 3959–3961. IEEE (2019). https://doi.org/10.1109/IGARSS.2019.8899798

  51. Li, W.; He, C.; Fang, J.; Zheng, J.; Fu, H.; Yu, L.: Semantic segmentation-based building footprint extraction using very high-resolution satellite images and multi-source GIS data. Remote Sens. 11(4), 403 (2019). https://doi.org/10.3390/rs11040403

    Article  Google Scholar 

  52. Schuegraf, P.; Bittner, K.: Automatic building footprint extraction from multi-resolution remote sensing images using a hybrid FCN. ISPRS Int. J. Geo-Inf. 8(4), 191 (2019). https://doi.org/10.3390/ijgi8040191

    Article  Google Scholar 

  53. Yang, H.L.; Yuan, J.; Lunga, D.; Laverdiere, M.; Rose, A.; Bhaduri, B.: Building extraction at scale using convolutional neural network: map** of the united states. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(8), 2600–2614 (2018). https://doi.org/10.1109/JSTARS.2018.2835377

    Article  Google Scholar 

  54. Khan, S.D.; Alarabi, L.; Basalamah, S.: An encoder–decoder deep learning framework for building footprints extraction from aerial imagery. Arab. J. Sci. Eng. 48(2), 1273–1284 (2023)

    Article  Google Scholar 

  55. Hurtado, J.V.; Valada, A.: Semantic scene segmentation for robotics. In: Deep learning for robot perception and cognition, pp. 279–311. Academic Press (2022)

  56. Bouvrie, J.: Notes on convolutional neural networks (2006). https://doi.org/10.1016/j.protcy.2014.09.007

  57. Hamaguchi, R.; Fujita, A.; Nemoto, K.; Imaizumi, T.; Hikosaka, S.: Effective use of dilated convolutions for segmenting small object instances in remote sensing imagery. In: IEEE Winter Conf Appl Comput Vis (WACV), pp. 1442–1450 (2018). https://doi.org/10.1109/WACV.2018.00162

  58. Mnih, V.: Machine Learning for Aerial Image Labeling. University of Toronto (Canada), Toronto (2013)

    Google Scholar 

  59. Chen, Q.; Wang, L.; Wu, Y.; Wu, G.; Guo, Z.; Waslander, S.L.: TEMPORARY REMOVAL: aerial imagery for roof segmentation: a large-scale dataset towards automatic map** of buildings. ISPRS J. Photogramm. Remote Sens. 147(A5), 42–55 (2019). https://doi.org/10.1016/j.isprsjprs.2018.11.011

    Article  Google Scholar 

  60. Burgan, H.: Comparison of different ANN (FFBP GRNN F) algorithms and multiple linear regression for daily streamflow prediction in Kocasu River-Turkey. Fresenius Environ. Bull. 31(5), 4699–4708 (2022)

Download references

Acknowledgements

The authors acknowledge ISRO RESPOND Programme and Director, Indian Institute of Remote Sensing (IIRS) Dehradun for funding, guidance and support to this work. Authors extend their thanks to the management of St. Joseph’s College of Engineering, Chennai, for their support for this study.

Funding

This is a collaborative sponsored research work between Indian Institute of Remote Sensing (IIRS), Dehradun, and St. Joseph’s College of Engineering, Chennai. It is funded by the Indian Space Research Organisation (ISRO), Department of Space, Government of India, under RESPOND-BASKET 2021 Project scheme of India, Grant No. ISRO/RES/4/687/21-22.

Author information

Authors and Affiliations

Authors

Contributions

Dr. AR, Dr VS were responsible for the conceptualization and idea of the project. Mr. SVG performed statistical analysis, coding, and implementation. Dr AR, Dr SA, and Dr MLMJ were responsible for the whole framing, streamlining of the research project and have rigorously drafted the manuscript or revising it critically for important intellectual content. All authors have substantial contributions toward concept and design, or analysis and interpretation of data; all have been involved in drafting the manuscript and Dr. VS has given the final approval for this version to be published. Each author has participated sufficiently in the work to take public responsibility for the content. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Avudaiammal Ramalingam or Sam Varghese George.

Ethics declarations

Conflict of interest

No potential of interest among the author(s).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalingam, A., George, S.V., Srivastava, V. et al. Semantic Segmentation-Based Building Extraction in Urban Area Using Memory-Efficient Residual Dilated Convolutional Network. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08593-z

Keywords

Navigation