Log in

Evaluation of Mechanical and Microstructural Characterization of Microfiber-Reinforced Nanocomposites Comprising Nano-Alumina

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The production of Portland cement results in a large quantity of carbon dioxide gas that is dangerous for the sustainability of the environment. Thus, the researchers need to develop a sustainable replacement for Portland cement to be implemented in the construction industry. The present work investigates the mechanical, microstructural, and mineralogical properties of geopolymer (GPL) by adding microcarbon fiber (CF) and nano-alumina (NAL). The CF content was fixed to 0.5% by weight of the mix while the NAL was varied from 0 to 4% by weight of the binder to examine its effect on the behavior of GPL. The test results established the use of 3% NAL along with the combination of 0.5% CF as the optimal combination for enhancing the compressive strength of GPL by 22%, flexural strength by 46%, and impact strength by 64%. The microstructural investigation of fabricated samples using scanning electron microscopic analysis revealed that the combined use of NAL and CF works as the most effective tool for strengthening the internal matrix of GPL with improved mechanical and microstructural performance. An increase in the intensity of hump situated between 15° and 40° in the XRD analysis is noticed, it might be because expanding the GPL matrix could lead to the dissolution of NAL nanoparticles, leading to the development of calcium silicate hydrate (\(\mathrm{C}-\mathrm{S}-\mathrm{H}\)) next to the primary binder, sodium aluminosilicate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S.K.: Geopolymer concrete: a review of some recent developments. Constr. Build. Mater. 85, 78–90 (2015)

    Article  Google Scholar 

  2. Provis, J.L.; Palomo, A.; Shi, C.: Advances in understanding alkali-activated materials. Cem. Concr. Res. 78, 110–125 (2015)

    Article  Google Scholar 

  3. Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42(9), 2917–2933 (2007)

    Article  Google Scholar 

  4. Flower, D.J.; Sanjayan, J.G.: Green house gas emissions due to concrete manufacture. Int. J. Cycle Assess. 12(5), 282–288 (2007)

    Article  Google Scholar 

  5. Wang, J., et al.: Study on the optimum initial curing condition for fly ash and GGBS based geopolymer recycled aggregate concrete. Constr. Build. Mater. 247, 118540 (2020)

    Article  Google Scholar 

  6. Ali, N., et al.: Evaluation of the 12–24 mm basalt fibers and boron waste on reinforced metakaolin-based geopolymer. Constr. Build. Mater. 251, 118976 (2020)

    Article  Google Scholar 

  7. Mehta, A.; Siddique, R.: Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash. Constr. Build. Mater. 150, 792–807 (2017)

    Article  Google Scholar 

  8. Patel, Y.J.; Shah, N.: Development of self-compacting geopolymer concrete as a sustainable construction material. Sustain. Environ. Res. 28(6), 412–421 (2018)

    Article  Google Scholar 

  9. El-Sayed, T.A.; Algash, Y.A.: Flexural behavior of ultra-high performance geopolymer RC beams reinforced with GFRP bars. Case Stud. Constr. Mater. 15, e00604 (2021)

    Google Scholar 

  10. Provis, J.L.; Bernal, S.A.: Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 44, 299–327 (2014)

    Article  Google Scholar 

  11. Das, S.K., et al.: Fresh, strength and microstructure properties of geopolymer concrete incorporating lime and silica fume as replacement of fly ash. J. Build. Eng. 32, 101780 (2020)

    Article  Google Scholar 

  12. Bellum, R.R., et al.: Investigation on performance enhancement of fly ash-GGBFS based graphene geopolymer concrete. J. Build. Eng. 32, 101659 (2020)

    Article  Google Scholar 

  13. Adesina, A.: Performance and sustainability overview of alkali-activated self-compacting concrete. Waste Dispos. Sustain. Energy 2(3), 165–175 (2020)

    Article  Google Scholar 

  14. Zhuang, X.Y., et al.: Fly ash-based geopolymer: clean production, properties and applications. J. Clean. Prod. 125, 253–267 (2016)

    Article  Google Scholar 

  15. Albitar, M., et al.: Durability evaluation of geopolymer and conventional concretes. Constr. Build. Mater. 136, 374–385 (2017)

    Article  Google Scholar 

  16. John, S.K.; Nadir, Y.; Girija, K.: Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: a review. Constr. Build. Mater. 280, 122443 (2021)

    Article  Google Scholar 

  17. John, S.K., et al.: Effect of addition of nanoclay and SBR latex on fly ash-slag geopolymer mortar. J. Build. Eng. 66, 105875 (2023)

    Article  Google Scholar 

  18. Wang, Y.; Hu, S.; He, Z.: Mechanical and fracture properties of geopolymer concrete with basalt fiber using digital image correlation. Theoret. Appl. Fract. Mech. 112, 102909 (2021)

    Article  Google Scholar 

  19. Pham, T.M.: Enhanced properties of high-silica rice husk ash-based geopolymer paste by incorporating basalt fibers. Constr. Build. Mater. 245, 118422 (2020)

    Article  Google Scholar 

  20. Timakul, P.; Rattanaprasit, W.; Aungkavattana, P.: Improving compressive strength of fly ash-based geopolymer composites by basalt fibers addition. Ceram. Int. 42(5), 6288–6295 (2016)

    Article  Google Scholar 

  21. Ren, D., et al.: Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack. Constr. Build. Mater. 134, 56–66 (2017)

    Article  Google Scholar 

  22. Punurai, W., et al.: Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste. Constr. Build. Mater. 186, 62–70 (2018)

    Article  Google Scholar 

  23. Ranjbar, N.; Zhang, M.: Fiber-reinforced geopolymer composites: a review. Cement Concr. Compos. 107, 103498 (2020)

    Article  Google Scholar 

  24. Alvee, A.R., et al.: Experimental study of the mechanical properties and microstructure of geopolymer paste containing nano-silica from agricultural waste and crystalline admixtures. Case Stud. Constr. Mater. 16, e00792 (2022)

    Google Scholar 

  25. El Ouni, M.H., et al.: Enhancement of mechanical and toughness properties of carbon fiber-reinforced geopolymer pastes comprising nano calcium oxide. J. Austr. Ceram. Soc. 58(4), 1375–1387 (2022)

    Article  Google Scholar 

  26. Raza, A., et al.: Experimental study on mechanical, toughness and microstructural characteristics of micro-carbon fibre-reinforced geopolymer having nano TiO2. Alex. Eng. J. (2022)

  27. Raza, A., et al.: Mechanical performance of geopolymer composites containing nano-silica and micro-carbon fibers. Arab. J. Sci. Eng. 47(10), 12621–12632 (2022)

    Article  Google Scholar 

  28. Adesina, A.: Durability enhancement of concrete using nanomaterials: an overview. In: Materials Science Forum. Trans Tech Publ. (2019)

  29. Adesina, A.: Nanomaterials in cementitious composites: review of durability performance. J. Build. Pathol. Rehabilit. 5(1), 1–9 (2020)

    Google Scholar 

  30. Gülşan, M.E., et al.: Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Constr. Build. Mater. 211, 271–283 (2019)

    Article  Google Scholar 

  31. Assaedi, H., et al.: Characterization and properties of geopolymer nanocomposites with different contents of nano-CaCO3. Constr. Build. Mater. 252, 119137 (2020)

    Article  Google Scholar 

  32. Ahmed, H.U.; Mohammed, A.A.; Mohammed, A.S.: The role of nanomaterials in geopolymer concrete composites: a state-of-the-art review. J. Build. Eng. 49, 104062 (2022)

    Article  Google Scholar 

  33. Zidi, Z.; Ltifi, M.; Zafar, I.: Synthesis and attributes of nano-SiO2 local metakaolin based-geopolymer. J. Build. Eng. 33, 101586 (2021)

    Article  Google Scholar 

  34. Chiranjeevi, K.; Vijayalakshmi, M.; Praveenkumar, T.: Investigation of fly ash and rice husk ash-based geopolymer concrete using nano particles. Appl. Nanosci. 13(1), 839–846 (2023)

    Article  Google Scholar 

  35. Ghareeb, K.S., et al.: The novelty of using glass powder and lime powder for producing UHPSCC. Buildings 12(5), 684 (2022)

    Article  Google Scholar 

  36. Tanzadeh, J.: Laboratory evaluation of self-compacting fiber-reinforced concrete modified with hybrid of nanomaterials. Constr. Build. Mater. 232, 117211 (2020)

    Article  Google Scholar 

  37. Guler, S.; Türkmenoğlu, Z.F.; Ashour, A.: Performance of single and hybrid nanoparticles added concrete at ambient and elevated temperatures. Constr. Build. Mater. 250, 118847 (2020)

    Article  Google Scholar 

  38. Mustakim, S.M., et al.: Improvement in fresh, mechanical and microstructural properties of fly ash-blast furnace slag based geopolymer concrete by addition of nano and micro silica. SILICON 13, 2415–2428 (2020)

    Article  Google Scholar 

  39. Al Bakri, A., et al.: Nano geopolymer for sustainable concrete using fly ash synthesized by high energy ball milling. In: Applied Mechanics and Materials. Trans Tech Publ. (2013)

  40. Mansourghanaei, M.; Biklaryan, M.; Mardookhpour, A.: Experimental study of the effects of adding silica nanoparticles on the durability of geopolymer concrete. Austr. J. Civil Eng. (2022). https://doi.org/10.1080/14488353.2022.2120247

    Article  Google Scholar 

  41. Ahmed, H.U., et al.: Compressive strength of geopolymer concrete modified with nano-silica: experimental and modeling investigations. Case Stud. Constr. Mater. 16, e01036 (2022)

    Google Scholar 

  42. Alomayri, T.; Raza, A.; Shaikh, F.: Effect of nano SiO2 on mechanical properties of micro-steel fibers reinforced geopolymer composites. Ceram. Int. 47(23), 33444–33453 (2021)

    Article  Google Scholar 

  43. Tuntachon, S., et al.: Resistance to algae and fungi formation of high calcium fly ash geopolymer paste containing TiO2. J. Build. Eng. 25, 100817 (2019)

    Article  Google Scholar 

  44. Sastry, K.G.K.; Sahitya, P.; Ravitheja, A.: Influence of nano TiO2 on strength and durability properties of geopolymer concrete. Mater. Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2020.03.139

    Article  Google Scholar 

  45. Ali, L., et al.: Experimental investigation on the mechanical and fracture evaluation of carbon Fiber-Reinforced cementitious composites with nano-calcium carbonate. Constr. Build. Mater. 308, 125095 (2021)

    Article  Google Scholar 

  46. Intarabut, D., et al.: Influence of graphene oxide nanoparticles on bond-slip reponses between fiber and geopolymer mortar. Nanomaterials 12(6), 943 (2022)

    Article  Google Scholar 

  47. Rashedi, A., et al.: Mechanical, fracture, and microstructural assessment of carbon-fiber-reinforced geopolymer composites containing Na2O. Polymers 13(21), 3852 (2021)

    Article  Google Scholar 

  48. D695-15 A.: Standard test method for compressive properties of rigid plastics, ASTM International, West Conshohocken, PA (2015)

  49. C78M-21, A.C.: Standard test method for flexural strength of concrete (Using Simple Beam with Third-Point Loading), ASTM International, West Conshohocken, PA (2021)

  50. Raza, A., et al.: Development of eco-friendly alkali-activated nanocomposites comprising micro-fibers at ambient curing conditions. Case Stud. Constr. Mater. 17, e01540 (2022)

    Google Scholar 

  51. Low, I., et al.: Mechanical and fracture properties of cellulose-fibre-reinforced epoxy laminates. Compos. A Appl. Sci. Manuf. 38(3), 963–974 (2007)

    Article  Google Scholar 

  52. D785-08(2015) A.: Standard test method for rockwell hardness of plastics and electrical insulating materials, ASTM International, West Conshohocken, PA (2015)

  53. Saini, G.; Vattipalli, U.: Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica. Case Stud. Constr. Mater. 12, e00352 (2020)

    Google Scholar 

  54. Nuaklong, P., et al.: Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J. Clean. Prod. 252, 119797 (2020)

    Article  Google Scholar 

  55. Alomayri, T.: Experimental study of the microstructural and mechanical properties of geopolymer paste with nano material (Al2O3). J. Build. Eng. 25, 100788 (2019)

    Article  Google Scholar 

  56. Assaedi, H.: The role of nano-CaCO3 in the mechanical performance of polyvinyl alcohol fibre-reinforced geopolymer composites. Compos. Interfaces (2020). https://doi.org/10.1080/09276440.2020.1793096

    Article  Google Scholar 

  57. Shaikh, F.; Shafaei, Y.; Sarker, P.: Effect of nano and micro-silica on bond behaviour of steel and polypropylene fibres in high volume fly ash mortar. Constr. Build. Mater. 115, 690–698 (2016)

    Article  Google Scholar 

  58. Yip, C.K.; Lukey, G.; Van Deventer, J.S.: The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35(9), 1688–1697 (2005)

    Article  Google Scholar 

  59. Yip, C.K., et al.: Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 38(4), 554–564 (2008)

    Article  Google Scholar 

  60. Bayiha, B.N., et al.: Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Constr. Build. Mater. 217, 28–35 (2019)

    Article  Google Scholar 

  61. Tchakoute, H., et al.: Influence of gibbsite and quartz in kaolin on the properties of metakaolin-based geopolymer cements. Appl. Clay Sci. 107, 188–194 (2015)

    Article  Google Scholar 

  62. Yusuf, M.O., et al.: Strength and microstructure of alkali-activated binary blended binder containing palm oil fuel ash and ground blast-furnace slag. Constr. Build. Mater. 52, 504–510 (2014)

    Article  Google Scholar 

  63. à Moungam, L.M.B., et al.: Properties of geopolymers made from fired clay bricks wastes and rice husk ash (RHA)-sodium hydroxide (NaOH) activator. Mater. Sci. Appl. 8(7), 537–552 (2017)

    Google Scholar 

  64. Bravo, P.I., et al.: Nanocrystalline titania coated metakaolin and rice hull ash based geopolymer spheres for photocatalytic degradation of dye in wastewater. Orient. J. Chem. 35(1), 167 (2019)

    Article  MathSciNet  Google Scholar 

  65. Guzmán-Aponte, L.A.; Mejía de Gutiérrez, R.; Maury-Ramírez, A.: Metakaolin-based geopolymer with added TiO2 particles: physicomechanical characteristics. Coatings 7(12), 233 (2017)

    Article  Google Scholar 

  66. Djobo, J.Y., et al.: Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin. J. Asian Ceram. Soc. 2(4), 387–398 (2014)

    Article  Google Scholar 

  67. Alomayri, T.; Shaikh, F.; Low, I.M.: Mechanical and thermal properties of ambient cured cotton fabric-reinforced fly ash-based geopolymer composites. Ceram. Int. 40(9), 14019–14028 (2014)

    Article  Google Scholar 

  68. Nana, A., et al.: Room-temperature alkaline activation of feldspathic solid solutions: development of high strength geopolymers. Constr. Build. Mater. 195, 258–268 (2019)

    Article  Google Scholar 

  69. NobouassiaBewa, C., et al.: Water resistance and thermal behavior of metakaolin-phosphate-based geopolymer cements. J. Asian Ceram. Soc. 6(3), 271–283 (2018)

    Article  Google Scholar 

  70. Shaikh, F.U.; Supit, S.W.: Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Constr. Build. Mater. 70, 309–321 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a large groups research program under grant number R.G.P. 2/130/44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Raza.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, M., Raza, A., Khan, Q.u.Z. et al. Evaluation of Mechanical and Microstructural Characterization of Microfiber-Reinforced Nanocomposites Comprising Nano-Alumina. Arab J Sci Eng 49, 5079–5094 (2024). https://doi.org/10.1007/s13369-023-08368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08368-6

Keywords

Navigation