Log in

Swing Reduction Control of Ship Crane Based on Rope Length Change

  • Research Article-Systems Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The traditional anti-swing control algorithm does not consider the coupling between the change of rope length and the swing angle when solving the swing problem of the work boat. As a result, the swing amplitude of the work boat is increased. Aiming at the above problems, a trajectory tracking strategy of PD control considering rope changes is proposed. Firstly, a nonlinear system model with rope change rate is constructed to describe the transient response characteristics of the external disturbance torque and control stability torque of the marine crane. Then, the model is constrained linearly according to the underdrive characteristics of ship crane. The simulation results show that the average swing amplitude of the working boat is reduced by 63.05% and that of the reverse one by 62.03%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yan, M.W.; Ma, X.; Bai, W.: Numerical simulation of wave interaction with payloads of different postures using open-foam. J. Mar. Sci. Eng. 8(6), 433 (2020)

    Article  Google Scholar 

  2. Rani, M.; Kumar, N.A.: New hybrid position/force control scheme for coordinated multiple mobile manipulators. Arab. J. Sci. Eng. 44, 2399–2411 (2019). https://doi.org/10.1007/s13369-018-3544-0

    Article  Google Scholar 

  3. Liu, Z.; Sun, Y.: Adaptive variable impedance control with fuzzy-pi compound controller for robot trimming system. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-06755-z

    Article  Google Scholar 

  4. Liu, Z.J.; Jiang, J.Y.; Lin, C.X.: Ballast water high-efficiency allocation optimisation modelling with dynamic programming for revolving floating cranes. Ships. Offshore. Struc. 13(8), 857–867 (2018)

    Article  Google Scholar 

  5. Ömürlü, V.E.; Yildiz, İ: Parallel self-tuning fuzzy Pd + Pd controller for a stewart-gough platform-based spatial joystick. Arab. J. Sci. Eng. 37, 2089–2102 (2012). https://doi.org/10.1007/s13369-012-0308-0

    Article  Google Scholar 

  6. Zhang, X.H.; Duan, M.L.; Mao, D.F.: A mathematical model of virtual simulation for deepwater installation of subsea production facilities. Ships. Offshore. Struc. 12(2), 182–195 (2017)

    Article  Google Scholar 

  7. Bae, J.; Cha, J.; Seo, M.G.: Experimental study on development of mooring simulator for multi floating cranes. J. Mar. Sci. Eng. 9(3), 344 (2017)

    Article  Google Scholar 

  8. Franch, J.; Agrawal, S.K.; Sangwan, V.: Differential flatness of a class of n-dof planar manipulators driven by 1 or 2 actuators. IEEE. T. Automat. Contr. 55(2), 548–554 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dehghani, H.; Sun, Y.; Cubrich, L.: An optimization-based algorithm for trajectory planning of an under-actuated robotic arm to perform autonomous suturing. IEEE. T. Bio-Med. Eng. 68(4), 1262–1272 (2021)

    Article  Google Scholar 

  10. Piao, Z.J.; Guo, C.; Sun, S.: Research into the automatic berthing of underactuated unmanned ships under wind loads based on experiment and numerical analysis. J. Mar. Sci. Eng. 7(9), 300 (2019)

    Article  Google Scholar 

  11. Xu, H.T.; Hinostroza, M.A.; Soares, C.G.: Modified vector field path-following control system for an underactuated autonomous surface ship model in the presence of static obstacles. J. Mar. Sci. Eng. 9(6), 652 (2020)

    Article  Google Scholar 

  12. Wu, X.Q., Xu, K. X., Zhang, Y. B.: Output-based feedback control of underactuated TORA systems by bounded inputs. N.a. Automat. Sinica. 46(1), 200–204 (2020)

  13. Zhong, H.R., Li, X.Y., Gao, L.: Gait planning optimization method for biped robots compliant walking on uneven terrain. J. Huazhong Univ. of Sci. Tech. (Nat. Sci. Ed.). 49(7), 97–102 (2021)

  14. Shehu, M.A.; Li, A.: A novel smooth super-twisting control method for perturbed nonlinear double-pendulum-type overhead cranes. Arab. J. Sci. Eng. 46, 7249–7263 (2021). https://doi.org/10.1007/s13369-021-05340-0

    Article  Google Scholar 

  15. Benhellal, B.; Hamerlain, M.; Rahmani, Y.: Decoupled adaptive neuro-interval type-2 fuzzy sliding mode control applied in a 3dcrane system. Arab. J. Sci. Eng. 43, 2725–2733 (2018). https://doi.org/10.1007/s13369-017-2747-0

    Article  Google Scholar 

  16. Qian, Y.Z.; Fang, Y.C.: Switching logic-based nonlinear feedback control of offshore ship-mounted tower cranes: A disturbance observer-based approach. IEEE. T. Ind. Electron. 16(3), 1125–1136 (2019)

    Google Scholar 

  17. Peng, J.H.; Huang, J.; Singhose, W.: Payload twisting dynamics and oscillation suppression of tower cranes during slewing motions. Nonlinear. Dynam. 98(2), 1041–1048 (2019)

    Article  Google Scholar 

  18. Zhang, M.H.; Zhang, Y.F.; Ouyang, H.M.: Adaptive integral sliding mode control with payload sway reduction for 4-DOF tower crane systems. Nonlinear. Dynam. 99, 2727–2741 (2020)

    Article  MATH  Google Scholar 

  19. Shi, H.Y.: Researches of key technologies and control methods of working boat davit. Harbin Eng. Univ, Harbin (2013)

    Google Scholar 

  20. Chen, Y.; Qian, Y.: Nonlinear vibration suppression control of underactuated shipboard rotary cranes with spherical pendulum and persistent ship roll disturbances. Ocean. Eng. 241, 110013 (2021)

    Article  Google Scholar 

  21. Ren, Z., Verma, A.S., Ataei, B.: Halse, K. H.; Hildre, H. P. Model-free anti-swing control of complex-shaped payload with offshore floating cranes and a large number of lift wires. Ocean. Eng. 228(9), 108868 (2021)

  22. Bc, A.; Am, A.; Rz, A.; Km, B.: Proposal of the 3-dof model as an approach to modelling offshore lifting dynamics. Ocean. Eng. 203, 107235 (2020)

    Article  Google Scholar 

  23. Ngo, Q.H.; Nguyen, N.P.; Chi, N.N.; Tran, T.H.; Ha, Q.P.: Fuzzy sliding mode control of an offshore container crane. Ocean. Eng. 140(1), 125–134 (2017)

    Article  Google Scholar 

  24. Ham, S.H.; Roh, M.I.; Lee, H.; Ha, S.: Multibody dynamic analysis of a heavy load suspended by a floating crane with constraint-based wire rope. Ocean. Eng. 109(15), 145–160 (2015)

    Article  Google Scholar 

  25. Koksal, M.E.: Commutativity of systems with their feedback conjugates. Trans. Inst. Meas. Control. 41(3), 696–700 (2019)

    Article  Google Scholar 

  26. Ni, S.K.; Liu, Z.J.; Cai, Y.: Ship manoeuvrability-based simulation for ship navigation in collision situations. J. Mar. Sci. Eng. 7(4), 90 (2019)

    Article  Google Scholar 

  27. Gao, B.T., Hang, X.L.: Nonlinear control design of underactuated 2DTORA based on partial feedback linearization. J. South Univ. (Nat. Sci. Ed.). 41 (02), 321–325 (2011)

  28. Ding, S.C.; Peng, L.; Qiao, S.L.: Dynamic modelling and PFL-based trajectory tracking control for underactuated cable-driven truss-like manipulator. J. Cent. South Univ. 28(10), 3127–3146 (2021)

    Article  Google Scholar 

  29. Sun, N.; Fang, Y.C.: Nonlinear anti-swing control of offshore cranes with unknown parameters and persistent ship-induced perturbations: Theoretical design and hardware experiments. IEEE. T. Ind. Electron. 65(3), 2629–2641 (2018)

    Article  Google Scholar 

  30. Paolo, B.; Dario, R.: Robust point-to-point planning for nonlinear underactuated systems: Theory and experimental assessment. Robot. Cim-Int. Manuf. 50, 256–285 (2017)

    Google Scholar 

  31. Zhang, M.H.; Ma, X.; Rong, X.W.: Error tracking control for underactuated overhead cranes against arbitrary initial payload swing angles. Mech. Syst. Signal. Pr. 84, 268–285 (2017)

    Article  Google Scholar 

  32. Yang, T.; Sun, N.; Chen, H.: Neural network-based adaptive anti-swing control of an underactuated Ship-Mounted crane with roll motions and input dead zones. IEEE. T. Neur. Net. Lear. 31(3), 901–914 (2020)

    Google Scholar 

  33. Ouyang, H.M.; Wang, J.; Zhang, G.M.: Tracking and anti-sway control for Double-Pendulum rotary cranes using novel sliding mode algorithm. Automat. Sinica. 45(7), 1344–1353 (2019)

    Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science Foundation for Young Scientists of China (62103120, 51909049), the National Science Foundation for Heilongjiang Province (LH2020E094, LH2021F033), Heilongjiang Postdoctoral Grant (LBH-Z22195, LBH-Z22197), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (UNPYSCT-2020190) and Heilongjiang Provincial Technological Innovation Center of Efficient Molding of Composite Materials and Intelligent Equipment (HPTIC202204).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions: SMX is the principal researcher of this study, LTT, WW.P. and TZG conduct the interpretation of the data, simulation, data analysis, writing the manuscript as well as language editing.

Corresponding author

Correspondence to Tiantian Luan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Luan, T., Tan, Z. et al. Swing Reduction Control of Ship Crane Based on Rope Length Change. Arab J Sci Eng 48, 15597–15608 (2023). https://doi.org/10.1007/s13369-023-07790-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07790-0

Keywords

Navigation