Log in

Heat Transfer Enhancement of Solar Air Heater Having Twisted V-Shaped Staggered Roughness Over Absorber Plate

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present experimental work is dedicated to establish the effect of novel twisted V-shaped staggered ribs provided on the absorber plate of solar air heater on the Nusselt number, friction factor and thermo-hydraulic performance parameter. The liquid crystal thermography technique is employed to measure the distribution of Nusselt number over the absorber plate. Experimentations have been done for all configurations of varied roughness parameters termed as relative roughness pitch ranging from 7 to 11, relative roughness length in the range of 4.39–10.26 and Reynolds number varying from 3000 to 21,000. The Nusselt number and friction factor of the roughened plate are compared with the smooth absorber plate under similar flow conditions. The optimum roughness parameters based on thermo-hydraulic performance parameter index are as relative roughness pitch of 9 and relative roughness length of 6.15. The maximum thermo-hydraulic performance parameter index obtained is 2.59.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

m :

Mass flow rate, kg/s

υ :

Kinematic viscosity, m2/s

μ :

Dynamic viscosity, Ns/m2

P d :

Pressure drop through the duct, Pa

P o :

Pressure difference across the orifice plate, Pa

ρ w :

Water density, kg/m3

ρ a :

Air density, kg/m3

h o :

Manometric height of fluid, m

α :

Angle of attack, degree

ρ :

Density of flowing air, kg/m3

T TLC :

Temperature of TLC sheets, K

T i :

Inlet temperature, K

T o :

Outlet temperature, K

T mfl :

Mean temperature of fluid, K

Q conv :

Heat transfer due to convection, W

W :

Width of duct, m

D :

Elevation of duct, m

D h :

Hydraulic diameter of duct, m

d o :

Throat diameter of orifice plate, m

d p :

Diameter of pipe, m

V air :

Velocity of flowing air, m/s

C p- air :

Specific heat capacity of air, J/kg K

e :

Height of rib, m

P :

Pitch of the rib, m

S :

Length of the rib / roughness length, m

d :

Staggered distance in between the rib, m

L :

Length between the two pressure taps, m

y :

Twist length of rib, (m)

y/e :

Relative twist length

Pr:

Prandtl number

Re:

Reynold number

h :

Convective heat transfer coefficient, W/m2K

Nu or Nur :

Nusselt number for roughened plate

f r :

Friction Factor for roughened plate

SAH:

Solar air heater

Nu s :

Nusselt number for smooth plate

f s :

Friction factor for smooth plate

THP, ξ:

Thermo-hydraulic performance

P/e :

Relative roughness pitch

d/e :

Relative staggered distance

S/e :

Relative roughness length

H:

Hue value

Sa :

Saturation value

I:

Intensity value

R, G, B :

Red, Green, Blue

LCT:

Liquid crystal thermography

TLC:

Thermo-chromic liquid crystal

References

  1. Joule, J.P.V.I.I.I.: On the surface-condensation of steam. Philos. Trans. R. Soc. Lond. 31(151), 133–160 (1861)

    Google Scholar 

  2. Kumar, A.; Layek, A.: Thermo-hydraulic performance of solar air heater having winglet type roughness element. J. Therm. Anal. Calorimet. 9, 1–5 (2022)

    Google Scholar 

  3. Pandey, N.K.; Bajpai, V.K.; Sharma, A.; Yadav, S.: CFD and thermo-hydraulic analysis of multiple arc roughened absorber plate with gaps used in solar air heaters. Int. J. Ambient Energy 43(1), 3275–3281 (2022)

    Article  Google Scholar 

  4. Kumar, D.; Layek, A.: Parametric analysis of artificial rib roughness for the enhancement of thermo-hydraulic performance of solar air heater: a review. Mater. Today Proc. 57, 1127–1135 (2022). https://doi.org/10.1016/j.matpr.2021.10.006

    Article  Google Scholar 

  5. Prasad, K.; Mullick, S.C.: Heat transfer characteristics of a solar air heater used for drying purposes. Appl. Energy. 13, 83–93 (1983). https://doi.org/10.1016/0306-2619(83)90001-6

    Article  Google Scholar 

  6. Sahu, M.M.; Bhagoria, J.L.: Augmentation of heat transfer coefficient by using 90° broken transverse ribs on absorber plate of solar air heater. Renew. Energy. (2005). https://doi.org/10.1016/j.renene.2004.10.016

    Article  Google Scholar 

  7. Karwa, R.: Experimental studies of augmented heat transfer and friction in asymmetrically heated rectangular ducts with ribs on the heated wall in transverse, inclined, V-continuous and V-discrete pattern. Int. Commun. Heat Mass Trans. 30(2), 241–250 (2003)

    Article  Google Scholar 

  8. Bharadwaj, G.; Kaushal, M.; Goel, V.: Heat transfer and friction characteristics of an equilateral triangular solar air heater duct using inclined continuous ribs as roughness element on the absorber plate. Int. J. Sustain. Energy. 32, 515–530 (2013). https://doi.org/10.1080/14786451.2012.724687

    Article  Google Scholar 

  9. Aharwal, K.R.; Gandhi, B.K.; Saini, J.S.: Experimental investigation on heat-transfer enhancement due to a gap in an inclined continuous rib arrangement in a rectangular duct of solar air heater. Renew. Energy. 33, 585–596 (2008). https://doi.org/10.1016/j.renene.2007.03.023

    Article  Google Scholar 

  10. Jain, P.K.; Lanjewar, A.; Bhagoria, J.L.: Heat transfer analysis of double discrete arc roughness with different relative rib altitudes and relate to a single discrete arc in the solar air heater. Int. J. Ambient Energy 29, 1–23 (2022)

    Google Scholar 

  11. Lanjewar, A.M.; Bhagoria, J.L.; Sarviya, R.M.: Performance analysis of W-shaped rib roughened solar air heater. J. Renew. Sustain. Energy. (2011). https://doi.org/10.1063/1.3595740

    Article  Google Scholar 

  12. Kumar, A.; Bhagoria, J.L.; Sarviya, R.M.: Heat transfer and friction correlations for artificially roughened solar air heater duct with discrete W-shaped ribs. Energy Convers. Manag. (2009). https://doi.org/10.1016/j.enconman.2009.01.025

    Article  Google Scholar 

  13. Kumar, A.; Layek, A.: Nusselt number and friction characteristics of a solar air heater that has a winglet type vortex generator in the absorber surface. Exp. Therm. Fluid Sci. (2020). https://doi.org/10.1016/j.expthermflusci.2020.110204

    Article  Google Scholar 

  14. Bopche, S.B.; Tandale, M.S.: Experimental investigations on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct. Int. J. Heat Mass Trans. (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.039

    Article  Google Scholar 

  15. Promvonge, P.; Khanoknaiyakarn, C.; Kwankaomeng, S.; Thianpong, C.: Thermal behavior in solar air heater channel fitted with combined rib and delta-winglet. Int. Commun. Heat Mass Trans. 38, 749–756 (2011). https://doi.org/10.1016/j.icheatmasstransfer.2011.03.014

    Article  Google Scholar 

  16. Layek, A.; Saini, J.S.; Solanki, S.C.: Heat transfer and friction characteristics for artificially roughened ducts with compound turbulators. Int. J. Heat Mass Trans. 50, 4845–4854 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.042

    Article  Google Scholar 

  17. Kumar, A.; Layek, A.: Thermo-hydraulic performance of solar air heater having twisted rib over the absorber plate. Int. J. Therm. Sci. (2018). https://doi.org/10.1016/j.ijthermalsci.2018.07.026

    Article  Google Scholar 

  18. Ebrahim Momin, A.M.; Saini, J.S.; Solanki, S.C.: Heat transfer and friction in solar air heater duct with V-shaped rib roughness on absorber plate. Int. J. Heat Mass Trans. (2002). https://doi.org/10.1016/S0017-9310(02)00046-7

    Article  Google Scholar 

  19. Hans, V.S.; Saini, R.P.; Saini, J.S.: Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple v-ribs. Sol. Energy. (2010). https://doi.org/10.1016/j.solener.2010.02.004

    Article  Google Scholar 

  20. Patel, Y.M.; Jain, S.V.; Lakhera, V.J.: Thermo-hydraulic performance analysis of a solar air heater roughened with reverse NACA profile ribs. Appl. Therm. Eng. 170, 114940 (2020). https://doi.org/10.1016/j.applthermaleng.2020.114940

    Article  Google Scholar 

  21. Singh, S.; Chander, S.; Saini, J.S.: Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs. Energy (2011). https://doi.org/10.1016/j.energy.2011.05.052

    Article  Google Scholar 

  22. Kumar, D.; Kumar, A.; Layek, A.: Measurement of temperature distribution using liquid crystal thermography technique over the absorber plate of solar air heater. Lect Notes Mech. Eng. (2021). https://doi.org/10.1007/978-981-33-4165-4_31

    Article  Google Scholar 

  23. Deo, N.S.; Chander, S.; Saini, J.S.: Performance analysis of solar air heater duct roughened with multigap V-down ribs combined with staggered ribs. Renew. Energy. 91, 484–500 (2016). https://doi.org/10.1016/j.renene.2016.01.067

    Article  Google Scholar 

  24. Patil, A.K.; Saini, J.S.; Kumar, K.: Heat transfer and friction characteristics of solar air heater duct roughened by broken V-shape ribs combined with staggered rib piece. J. Renew. Sustain. Energy. 4, 013115 (2012). https://doi.org/10.1063/1.3682072

    Article  Google Scholar 

  25. Markal, B.; Aydın, O.; Avcı, M.: Exergy analysis of a counter–flow Ranque-Hilsch vortex tube having different helical vortex generators. Int. J. Exergy 10(2), 228–238 (2012)

    Article  Google Scholar 

  26. Zhou, Z.; Tkachenko, S.; Bahl, P.; Tavener, D.; de Silva, C.; Timchenko, V.; Jiang, J.Y.; Keevers, M.; Green, M.: Passive PV module cooling under free convection through vortex generators. Renew. Energy 1(190), 319–329 (2022)

    Article  Google Scholar 

  27. Stasiek, J.; Stasiek, A.; Jewartowski, M.; Collins, M.W.: Liquid crystal thermography and true-colour digital image processing. Opt. Laser Technol. 38, 243–256 (2006). https://doi.org/10.1016/j.optlastec.2005.06.028

    Article  Google Scholar 

  28. Saini, R.P.; Saini, J.S.: Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element. Int. J. Heat Mass Trans. 40, 973–986 (1997). https://doi.org/10.1016/0017-9310(96)00019-1

    Article  Google Scholar 

  29. H.W. Coleman, W.G. Steele, Experimentation, Validation and Uncertainty Analysis for Engineers, Wiley, (2018). doi:https://doi.org/10.1002/9781119417989

  30. Jain, S.K.; Misra, R.; Kumar, A.; Agrawal, G.D.: Thermal performance investigation of a solar air heater having discrete V-shaped perforated baffles. Int. J. Ambient Energy 43(1), 243–251 (2022)

    Article  Google Scholar 

  31. Bhuvad, S.S.; Azad, R.; Lanjewar, A.: Thermal performance analysis of apex-up discrete arc ribs solar air heater-an experimental study. Renew. Energy 1(185), 403–415 (2022)

    Article  Google Scholar 

  32. Kumar, A.; Layek, A.: Evaluation of the performance analysis of an improved solar air heater with Winglet shaped ribs. Exp. Heat Trans. 35(3), 239–257 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by DST- SERB, File. no: EEQ/2018/001012, dated: 26/02/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeraj Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Layek, A. Heat Transfer Enhancement of Solar Air Heater Having Twisted V-Shaped Staggered Roughness Over Absorber Plate. Arab J Sci Eng 48, 3931–3946 (2023). https://doi.org/10.1007/s13369-022-07319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07319-x

Keywords

Navigation