Log in

Study on Strength Behavior of Basalt Fiber-Reinforced Loess by Digital Image Technology (DIT) and Scanning Electron Microscope (SEM)

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Basalt fiber has unique advantages in the reinforcement of slopes and foundation. In this study, triaxial shear tests under undrained unconsolidated conditions, digital image technology and scanning electron microscope (SEM) tests were carried out to investigate the mechanism of fiber reinforcement to improve the shear strength of loess. Results show that the shear strength of reinforced sample is significantly higher than that of the unreinforced case, but not monotonically with increasing fiber length or fiber content, but with a maximum value at 0.6% fiber content and 12 mm fiber length. The failure morphology and strain field indicate that samples at higher fiber content exhibit bulging failure while those without fiber or at low fiber content show shear band failure. SEM images implies that the fibers in the soil tend to be orderly distributed as the fiber content increases while prone to bending and entanglement as the fiber length grows, which limits the mechanical response of the fibers. The statistical analysis proves that the hyperbolic strength model fits better than the parabola in the tension-shear and the shear domain. A unified joint strength model for basalt fiber-reinforced loess was obtained by fitting test data under different fiber contents and its rationality was verified by the error analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability of data and material

Some or all data, figures, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Gao, G.: The distribution and geotechnical properties of loess soils, lateritic soils and clayey soils in China. Eng. Geol. 42, 95–104 (1996). https://doi.org/10.1016/0013-7952(95)00056-9

    Article  Google Scholar 

  2. Lin, Z.; Liang, W.: Engineering properties and zoning of loess and loess-like soils in China. Can. Geotech. J. 19, 76–91 (2011). https://doi.org/10.1016/0148-9062(83)91627-3

    Article  Google Scholar 

  3. Xu, J.; Li, Y.; Ren, C.; Wang, S.; Vanapalli, S.K.; Chen, G.: Influence of freeze-thaw cycles on microstructure and hydraulic conductivity of saline intact loess. Cold Reg. Sci. Technol. (2021). https://doi.org/10.1016/j.coldregions.2020.103183

    Article  Google Scholar 

  4. Xu, Y.; Allen, M.B.; Zhang, W.; Li, W.; He, H.: Landslide characteristics in the Loess Plateau, northern China. Geomorphology (2020). https://doi.org/10.1016/j.geomorph.2020.107150

    Article  Google Scholar 

  5. Wang, L.; **, B.; Yang, Y.; Jia, W.: Contrast study on prediction models of settlement of loess-fill subgrade after construction. J. China Rail Soc. 30, 43–47 (2008)

    Google Scholar 

  6. Zhao, Y.; He, H.; Li, P.: Key techniques for the construction of high-speed railway large-section loess tunnels. Engineering 4, 254–259 (2018). https://doi.org/10.1016/j.eng.2017.07.003

    Article  Google Scholar 

  7. Wu, J.J.; Cheng, Q.G.; Liang, X.; Cao, J.L.: Stability analysis of a high loess slope reinforced by the combination system of soil nails and stabilization piles. Front. Struct. Civ. Eng. 8, 252–259 (2014). https://doi.org/10.1016/j.jacceco.2009.12.004

    Article  Google Scholar 

  8. Li, S.; Ma, Z.; Tian, Z.: Experimental study on Long-short piles reinforced loess foundation for high speed railway. J. China Rail Soc. 38, 78–84 (2016). https://doi.org/10.3969/j.issn.1001-8360.2016.10.011 (in chinese)

    Article  Google Scholar 

  9. Fraser, R.A.: Reinforced earth. In: Finkl, C. (ed) Applied Geology. Encyclopedia of Earth Sciences Series, vol 3. Springer, Boston, MA (1984). https://doi.org/10.1007/0-387-30842-3_52

  10. Patra, C.R.; Das, B.M.; Atalar, C.: Bearing capacity of embedded strip foundation on geogrid-reinforced sand. Geotext Geomembr. 23, 454–462 (2005). https://doi.org/10.1016/j.geotexmem.2005.02.001

    Article  Google Scholar 

  11. Tafreshi, S.N.M.; Dawson, A.R.: Behaviour of footings on reinforced sand subjected to repeated loading-Comparing use of 3D and planar geotextile. Geotext Geomembr. 28, 434–447 (2010). https://doi.org/10.1016/j.geotexmem.2009.12.007

    Article  Google Scholar 

  12. Wang, Z.; Jacobs, F.; Ziegler, M.: Experimental and DEM investigation of geogrid-soil interaction under pullout loads. Geotext Geomembr.. 44, 230–246 (2016). https://doi.org/10.1016/j.geotexmem.2015.11.001

    Article  Google Scholar 

  13. Wang, Z.; Jacobs, F.; Ziegler, M.: Visualisation and quantification of geogrid reinforcing effects under strip footing loads using discrete element method. Geotext Geomembr.. 48, 62–70 (2020). https://doi.org/10.1016/j.geotexmem.2019.103505

    Article  Google Scholar 

  14. Hejazi, S.M.; Sheikhzadeh, M.; Abtahi, S.M.; Zadhoush, A.: A simple review of soil reinforcement by using natural and synthetic fibers. Constr. Build Mater. 30, 100–116 (2012). https://doi.org/10.1016/j.conbuildmat.2011.11.045

    Article  Google Scholar 

  15. Tran, K.Q.; Satomi, T.; Takahashi, H.: Improvement of mechanical behavior of cemented soil reinforced with waste cornsilk fibers. Constr. Build Mater. 178, 204–210 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.104

    Article  Google Scholar 

  16. Prabakar, J.; Sridhar, R.S.: Effect of random inclusion of sisal fibre on strength behaviour of soil. Constr. Build Mater. 16, 123–131 (2002). https://doi.org/10.1016/S0950-0618(02)00008-9

    Article  Google Scholar 

  17. Ghavami, G.; Filho, R.D.T.; Barbosa, N.P.: Behaviour of composite soil reinforced with natural fibres. Cement Concrete Comp. 21, 39–48 (1999). https://doi.org/10.1016/S0958-9465(98)00033-X

    Article  Google Scholar 

  18. Patel, S.K.; Singh, B.: Strength and deformation behavior of fiber-reinforced cohesive soil under varying moisture and compaction states. Geotech. Geol. Eng. 35, 1767–1781 (2017). https://doi.org/10.1007/s10706-017-0207-y

    Article  Google Scholar 

  19. Maheshwari, K.V.; Desai, A.K.; Solanki, C.H.: Performance of fiber reinforced clayey soil. Electron. J. Geotech. Eng. 16, 1067–1082 (2011)

    Google Scholar 

  20. Tang, C.S.; Shi, B.; Zhao, L.Z.: Interfacial shear strength of fiber reinforced soil. Geotext Geomembr. 28, 54–62 (2010). https://doi.org/10.1016/j.geotexmem.2009.10.001

    Article  Google Scholar 

  21. Kar, R.; Pradhan, P.: Strength and compressibility characteristics of randomly distributed fiber-reinforced soil. Int. J. Geotech. Eng. 5, 235–243 (2011). https://doi.org/10.3328/IJGE.2011.05.02.235-243

    Article  Google Scholar 

  22. Gray, D.H.; Ohashi, H.: Mechanics of fiber reinforcement in sand. J. Geotech. Eng. 109, 335–353 (1983). https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(335)

    Article  Google Scholar 

  23. Qiu, R.; Tong, H.; Fang, X.; Liao, Y.; Li, Y.: Analysis of strength characteristics of carbon fiber–reinforced microbial solidified sand. Adv. Mech. Eng. 11, 1–7 (2019). https://doi.org/10.1177/1687814019884420

    Article  Google Scholar 

  24. Czigany, T.: Trends in fiber reinforcements—the future belongs to basalt fiber. Express Polym. Lett. 1, 59–59 (2007). https://doi.org/10.3144/expresspolymlett.2007.11

    Article  Google Scholar 

  25. Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.; Hui, D.: A short review on basalt fiber reinforced polymer composites. Compos. Part B-Eng. 73, 166–180 (2015). https://doi.org/10.1016/j.compositesb.2014.12.011

    Article  Google Scholar 

  26. Guo, Z.; Wan, C.; Xu, M.; Chen, J.: Review of basalt fiber-reinforced concrete in China: alkali resistance of fibers and static mechanical properties of composites. Adv. Mater. Sci. Eng. (2018). https://doi.org/10.1155/2018/9198656

    Article  Google Scholar 

  27. Shao, L.; Wang, Z.; Liu, Y.: Digital image processing technique for measurement of the local deformation of soil specimen in triaxial test. Chin. J. Geotech. Eng. 2, 159–163 (2002). https://doi.org/10.3321/j.issn:1000-4548.2002.02.007

    Article  Google Scholar 

  28. Shao, L.; Sun, Y.; Wang, Z.; Liu, Y.: Application of digital image processing technique to triaxial test in soil mechanics. Rock Soil Mech. 1, 29–34 (2006). https://doi.org/10.1016/S1001-8042(06)60020-1 (in Chinese)

    Article  Google Scholar 

  29. Shao, L.T.; Liu, X.; Huang, C.; Guo, X.X.; Hua, C.B.: Development of multi-function triaxial apparatus for soil. Appl. Mech. Mater. 71–78, 4558–4563 (2011). https://doi.org/10.4028/www.scientific.net/AMM.71-78.4558

    Article  Google Scholar 

  30. Wang, P.; Sang, Y.; Guo, X.; Shao, L.; Zhao, J.; Ji, X.: A novel optical method for measuring 3D full-field strain deformation in geotechnical tri-axial testing. Meas. Sci. Technol. (2020). https://doi.org/10.1088/1361-6501/ab3c80

    Article  Google Scholar 

  31. Yang, S.; Shao, L.T.; Sang, Y.; Huang, C.; Guo, X.X.: Application of digital image processing technique in geotechnical dynamic triaxial test. Int. J. Appl. Math. Stat. 39, 622–629 (2013)

    Google Scholar 

  32. Zeng, F.; Shao, L.: Unloading elastic behavior of sand in cyclic triaxial tests. Geotech. Test J. 39, 1–14 (2016). https://doi.org/10.1520/GTJ20150171

    Article  Google Scholar 

  33. Shao, L.T.; Liu, G.; Zeng, F.T.; Guo, X.S.: Recognition of the stress-strain curve based on the local deformation measurement of soil specimens in the triaxial test. Geotech. Test J. 39(4), 658–672 (2016). https://doi.org/10.1520/GTJ20140273

    Article  Google Scholar 

  34. Yu, M.: Advances in strength theories for materials under complex stress state in the 20th Century. Appl. Mech. Rev. 55, 169–218 (2002). https://doi.org/10.1115/1.1472455

    Article  Google Scholar 

  35. Griffith, A.A.: The theory of rupture. Proceedings of the First International Congress for Applied Mechanics. pp. 55–63 (1924)

  36. Abbo, A.J.; Sloan, S.W.: A smooth hyperbolic approximation to the mohr-coulomb yield criterion. Comput. Struct. 54, 427–441 (1995). https://doi.org/10.1016/0045-7949(94)00339-5

    Article  MATH  Google Scholar 

  37. Li, R.; Liu, J.; Zheng, W.; Yan, R.; Shao, S.: A bilinear strength formula for structured loess based on tensile strength and shear strength and its application. Chin. J. Geotech. Eng. 35, 247–252 (2013)

    Google Scholar 

  38. Li, R.; Liu, J.; Zheng, W.; Yan, R.; Shao, S.: Characteristics of structural loess strength and preliminary framework for joint strength formula. Water Sci. Eng. 7, 319–330 (2014). https://doi.org/10.3882/j.issn.1674-2370.2014.03.007

    Article  Google Scholar 

  39. Wang, Y.; Ni, W.; Yuan, Z.: Discussion on joint strength theory of instact loes. J. Hefei Univ. Technol. 38, 1688–1692 (2015). https://doi.org/10.3969/j.issn.1003-5060.2015.12.021 (in Chinese)

    Article  Google Scholar 

  40. Song, Y.; Li, R.; Liu, J.; Guo, H.: A hyperbola strength formula of structural loess and its modifying algorithm under failure stress state. Rock Soil Mech. 35, 247–252 (2013). https://doi.org/10.16285/j.rsm.2014.06.033

    Article  Google Scholar 

  41. Liu, J.; Li, R.; Sun, P.; Wang, Z.; Luo, J.; Li, Z.: Duncan-Chang nonlinear constitutive model based on joint strength theory of structural loess. Chin. J. Geotech. Eng. 40, 124–128 (2018). https://doi.org/10.11779/CJGE2018S1020

    Article  Google Scholar 

  42. Zhao, C.; Shao, M.; Jia, X.; Zhang, C.: Particle size distribution of soils (0–500 cm) in the Loess Plateau, China. Geoderma Reg. 7, 251–258 (2016). https://doi.org/10.1016/j.geodrs.2016.05.003

    Article  Google Scholar 

  43. Xu, J.; Wang, Z.; Ren, J.; Wang, S.; **, L.: Mechanism of slope failure in loess terrains during spring thawing. J. Mt. Sci. 15, 845–858 (2018). https://doi.org/10.1007/s11629-017-4584-8

    Article  Google Scholar 

  44. Cui, H.; **, Z.; Bao, X.; Tang, W.; Dong, B.: Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms. Constr. Build. Mater. 189, 286–295 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.181

    Article  Google Scholar 

  45. Ma, Q.; Yang, Y.; **ao, H.; **ng, W.: Studying shear performance of flax fiber-reinforced clay by triaxial test. Adv. Civ. Eng. (2018). https://doi.org/10.1155/2018/1290572

    Article  Google Scholar 

Download references

Acknowledgements

The research described in this paper was financially supported by the National Natural Science Foundation of China (Grant Nos. 51878551, 51478385 and 51778528), and the China Scholarship Council (CSC). These supports are greatly appreciated.

Funding

The research described in this paper was financially supported by the National Natural Science Foundation of China (Grant Nos. 51878551, 51478385 and 51778528), the Research Fund of the State Key Laboratory of Eco-hydraulics in Northwest Arid Region, **'an University of Technology (Grant No. 2019KJCXTD-12) and the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Contributions

Zhipeng Wu and **angang Zhou performed writing—review and editing. Conceptualization was performed by Jian Xu. Methodology, resources, funding acquisition and supervision were performed by Jian Xu and Songhe Wang. Formal analysis and investigation and writing—original draft preparation were performed by Hui Chen and Zhipeng Wu. Data curation was performed by Longtan Shao, Zhipeng Wu and Hui Chen.

Corresponding author

Correspondence to Jian Xu.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Wu, Z., Chen, H. et al. Study on Strength Behavior of Basalt Fiber-Reinforced Loess by Digital Image Technology (DIT) and Scanning Electron Microscope (SEM). Arab J Sci Eng 46, 11319–11338 (2021). https://doi.org/10.1007/s13369-021-05787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05787-1

Keywords

Navigation